EDR-G903/G902 User's Manual

Second Edition, January 2011

www.moxa.com/product

EDR-G903/G902 User's Manual

The software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement.

Copyright Notice

Copyright © 2011 Moxa Inc.

All rights reserved.

Reproduction without permission is prohibited.

Trademarks

The MOXA logo is a registered trademark of Moxa Inc.

All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa.

Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information

www.moxa.com/support

 Moxa Americas
 Moxa China (Shanghai office)

 Toll-free:
 1-888-669-2872

 Tel:
 +1-714-528-6777

 Tel:
 +86-21-5258-9955

Fax: +1-714-528-6778 Fax: +86-21-5258-5505

Moxa Europe Moxa Asia-Pacific

Tel: +49-89-3 70 03 99-0 Tel: +886-2-8919-1230 Fax: +49-89-3 70 03 99-99 Fax: +886-2-8919-1231

Table of Contents

1.	Introduction	1-1
	Overview	1-2
	Package Checklist	1-2
	Features	1-2
	Industrial Networking Capability	
	Designed for Industrial Applications	
	Useful Utility and Remote Configuration	1-2
2.	Getting Started	2-1
	RS-232 Console Configuration (115200, None, 8, 1, VT100)	
	Using Telnet to Access the EtherDevice Router's Console	
	Using a Web Browser to Configure the EtherDevice Router	
3.	Features and Functions	
J.	Configuring Basic Settings	
	System Identification	ऽ-ऽ २₋२
	Accessible IP	
	Password	
	Time	
	SettingCheck	
	System File Update—by Remote TFTP	
	System File Update—by Local Import/Export	
	Restart	. 3-11
	Reset to Factory Default	
	Network Settings	
	Mode Configuration	
	WAN1 Configuration	
	WAN2 Configuration (includes DMZ Enable)	
	Using DMZ Mode	
	LAN Interface	
	DHCP ServerStatic DHCP List	
	DHCP Leased List	
	Dynamic DNS	
	Network Redundancy	
	WAN Backup (EDR-G903 only)	
	Virtual Router Redundancy Protocol (VRRP)	. 3-25
	Static Routing and Dynamic Routing	. 3-26
	Static Routing	. 3-26
	RIP (Routing Information Protocol)	
	Routing Table	
	Network Address Translation (NAT)	
	NAT Concept	
	N-to-1 NAT Port Forwarding	
	1-to-1 NAT	
	Firewall Settings	
	Firewall Policy Concept	
	Firewall Policy Overview	
	Firewall Policy Configuration	
	Layer 2 Policy Setup	
	Quick Automation Profile	
	PolicyCheck	
	Denial of Service (DoS) function	. 3-40
	VPN (Virtual Private Network)	
	Overview	
	IPSec Configuration	
	X.509 Certification	
	L2TP (Layer 2 Tunnel Protocol)	
	Examples for Typical VPN Applications	
	Traffic Prioritization	
	Traffic Prioritization Configuration	
	Configuring SNMP	
	Using Auto Warning	
	Using Diagnosis	
	Using Monitor	
	Using System Log	
	Using HTTPs/SSL	

Α.	MIB Groups	A-1

Introduction

Welcome to the Moxa EtherDevice Router (EDR-G903/G902), the Gigabit Firewall/VPN secure routers designed for connecting Ethernet-enabled devices in industrial field applications.

The following topics are covered in this chapter:

- Overview
- Package Checklist
- Features
 - > Industrial Networking Capability
 - > Designed for Industrial Applications
 - > Useful Utility and Remote Configuration

EDR-G903/G902 Introduction

Overview

As the world's network and information technology becomes more mature, the trend is to use Ethernet as the major communications interface in many industrial communications and automation applications. In fact, a whole new industry has sprung up to provide Ethernet products that comply with the requirements of demanding industrial applications.

The EtherDevice Router series is a Gigabit speed, all-in-one Firewall/VPN/Router for Ethernet security applications in sensitive remote control and monitoring networks. The EtherDevice Router supports one WAN, one LAN, and a user-configurable WAN/DMZ interface (EDR-G903) that provides high flexibility for different applications, such as WAN redundancy or Data/FTP server security protection.

The Quick Automation Profile function of the EtherDevice Router's firewall supports most common Fieldbus protocols, including EtherCAT, EtherNet/IP, FOUNDATION Fieldbus, Modbus/TCP, and PROFINET. Users can easily create a secure Ethernet Fieldbus network from a user-friendly web UI with a single click. In addition, wide temperature models are available that operate reliably in hazardous, -40 to 75°C environments.

Package Checklist

The EtherDevice Router is shipped with the following items. If any of these items are missing or damaged, please contact your customer service representative for assistance.

- 1 Moxa EtherDevice Router
- RJ45 to DB9 console port cable
- · Protective caps for unused ports
- DIN-Rail mounting kit (attached to the EtherDevice Router's rear panel by default)
- · Hardware Installation Guide (printed)
- · CD-ROM with User's Manual and Windows Utility
- · Moxa Product Warranty statement

Features

Industrial Networking Capability

- · Router/Firewall/VPN all in one
- 1 WAN, 1 LAN, and 1 user-configurable WAN or DMZ interface
- Network address translation (N-to-1, 1-to-1, and port forwarding)

Designed for Industrial Applications

- · Dual WAN redundancy function
- · Firewall with Quick Automation Profile for Fieldbus protocols
- Intelligent PolicyCheck and SettingCheck tools
- -40 to 75°C operating temperature (T models)
- Long-haul transmission distance of 40 km or 80 km (with optional mini-GBIC)
- · Redundant, dual 12 to 48 VDC power inputs
- · IP30, rugged high-strength metal case
- · DIN-Rail or panel mounting ability

Useful Utility and Remote Configuration

- Configurable using a Web browser and Telnet/Serial console
- Send ping commands to identify network segment integrity

Getting Started

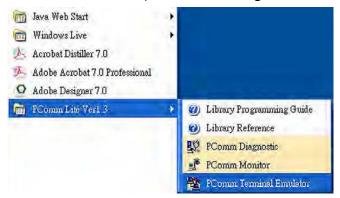
This chapter explains how to access the EtherDevice Router for the first time. There are three ways to access the switch: (1) serial console, (2) Telnet console, or (3) web browser. The serial console connection method, which requires using a short serial cable to connect the EtherDevice Router to a PC's COM port, can be used if you do not know the EtherDevice Router's IP address. The Telnet console and web browser connection methods can be used to access the EtherDevice Router over an Ethernet LAN, or over the Internet. A web browser can be used to perform all monitoring and administration functions, but the serial console and Telnet console only provide basic functions.

The following topics are covered in this chapter:

- RS-232 Console Configuration (115200, None, 8, 1, VT100)
- ☐ Using Telnet to Access the EtherDevice Router's Console
- ☐ Using a Web Browser to Configure the EtherDevice Router

RS-232 Console Configuration (115200, None, 8, 1, VT100)

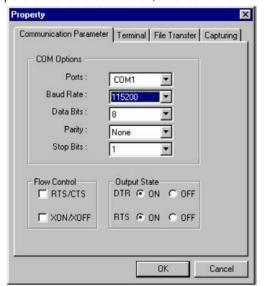
NOTE Connection Caution!


We strongly suggest that you do NOT use more than one connection method at the same time. Following this advice will allow you to maintain better control over the configuration of your EtherDevice Router

NOTE We recommend using Moxa PComm Terminal Emulator, which can be downloaded free of charge from Moxa's website.

Before running PComm Terminal Emulator, use an RJ45 to DB9-F (or RJ45 to DB25-F) cable to connect the EtherDevice Router's RS-232 console port to your PC's COM port (generally COM1 or COM2, depending on how your system is set up).

After installing PComm Terminal Emulator, perform the following steps to access the RS-232 console utility.


1. From the Windows desktop, click Start → Programs → PCommLite1.3 → Terminal Emulator.

2. Select **Open** in the Port Manager menu to open a new connection.

3. The Communication Parameter page of the Property window will appear. Select the appropriate COM port for Console Connection, 115200 for Baud Rate, 8 for Data Bits, None for Parity, and 1 for Stop Bits

- 4. Click the **Terminal** tab, and select VT100 for Terminal Type. Click **OK** to continue.
- 5. Type **1** to select **ansi/VT100** terminal type, and then press **Enter**.
- 6. The Console login screen will appear. Use the keyboard to enter the login account (admin or user), and then press Enter to jump to the Password field. Enter the console Password (this is the same as the Web Browser password; leave the Password field blank if a console password has not been set), and then press Enter.

```
EDR-G903 login: admin
Password:
Moxa EtherDevice Secure Router EDR-G903
Moxa Technologies Co., Ltd.
EDR-G903# _
```

7. Enter a question mark (?) to display the command list in the console.

```
EDR-G903#
 disable
            Switch the Admin mode to User mode
            End current mode and change to enable mode
 end
  exit
            Exit this consol mode connection
            Set the IP address of LAN interface
  lan
 list
            Print command list
 no
            Set the admin password to null
           Set the admin password
  password
 ping
            Send echo messages
            Exit this consol mode connection
 quit
  reboot
            Reboot this device
            Reload default configuration and reboot this device
 reload
  show
            Show running system information
  ssh
            Open a ssh connection
            Open a telnet connection
  telnet
EDR-G903#
```

The following table shows a list of commands that can be used when the EtherDevice Router is in console (serial or Telnet) mode:

Login by Admin account:

Command	Parameter/Example	Description
disable		Switch the Admin mode to User mode
exit/quit		Exit this consol mode connection
lan	lan ip address (A.B.C.D) netmask (A.B.C.D)	Set the IP address of LAN interface
	Example:	
	lan ip address 192.168.127.10 netmask	
	255.255.255.0	
list		Print command list
no	no password admin	Set the admin password to null
	no password user	Set the user password to null
password	password admin (password)	Set the admin password
	Example:	
	Password admin 1234	
	password user (password)	Set the user password
	Example:	
	Password user 1234	
ping	ping (IP address)	Send echo message
	Example:	
	ping 192.168.127.10	
reboot		Reboot this device
reload	default-config	Reload default configuration and Reboot this
		device
show	show lan	Show running system information

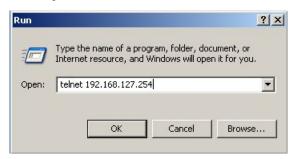
telnet	telnet (IP address)	Open a telnet connection		
	Example:			
	telnet 192.168.127.10			
	telnet (IP address) (port number)	Open a telnet connection with port number		
	Example:			
	telnet 192.168.127.10 23			
ssh	ssh (IP address)	Open a ssh connection		
	Example:			
	ssh 192.168.127.10			

Login by User account:

Command	Parameter/Example	Description
exit/quit		Exit this consol mode connection
list		Print command list
ping	ping (IP address)	Ping remote device via IP
	Example:	
	ping 192.168.127.10	
show	show lan	Show running system information
ssh	ssh (IP address)	Open a ssh connection
	Example:	
	ssh 192.168.127.10	
telnet	telnet (IP address)	Open a telnet connection
	Example:	
	telnet 192.168.127.10	
	telnet (IP address) (port number)	Open a telnet connection with port number
	Example:	
	telnet 192.168.127.10 23	

Using Telnet to Access the EtherDevice Router's Console

You may use Telnet to access the EtherDevice Router's console utility over a network. To access the EDR's functions over the network (by either Telnet or a web browser) from a PC host that is connected to the same LAN as the EtherDevice Router, you need to make sure that the PC host and the EtherDevice Router are on the same logical subnet. To do this, check your PC host's IP address and subnet mask. By default, the EtherDevice Router's LAN IP address is 192.168.127.254 and the EtherDevice Router's subnet mask is 255.255.255.0 (for a Class C subnet). If you do not change these values, and your PC host's subnet mask is 255.255.0.0, then its IP address must have the form 192.168.xxx.xxx. On the other hand, if your PC host's subnet mask is 255.255.255.0, then its IP address must have the form, 192.168.127.xxx.


NOTE To use the EtherDevice Router's management and monitoring functions from a PC host connected to the same LAN as the EtherDevice Router, you must make sure that the PC host and the EtherDevice Router are connected to the same logical subnet.

NOTE Before accessing the console utility via Telnet, first connect the EtherDevice Router's RJ45 Ethernet LAN ports to your Ethernet LAN, or directly to your PC's Ethernet card (NIC). You can use either a straight-through or cross-over Ethernet cable.

NOTE The EtherDevice Router's default LAN IP address is 192.168.127.254.

Perform the following steps to access the console utility via Telnet.

Click Start (Run, and then telnet to the EtherDevice Router's IP address from the Windows Run window.
 (You may also issue the telnet command from the MS-DOS prompt.).

2. Refer to instructions 6 and 7 in the RS-232 Console Configuration (115200, None, 8, 1, VT100) section on page 2-3.

Using a Web Browser to Configure the EtherDevice Router

The EtherDevice Router's web browser interface provides a convenient way to modify the switch's configuration and access the built-in monitoring and network administration functions. The recommended web browser is Microsoft Internet Explorer 6.0 with JVM (Java Virtual Machine) installed.

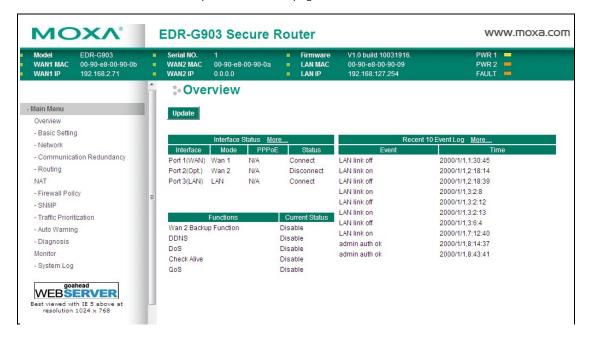
NOTE To use the EtherDevice Router's management and monitoring functions from a PC host connected to the same LAN as the EtherDevice Router, you must make sure that the PC host and the EtherDevice Router are connected to the same logical subnet.

NOTE Before accessing the EtherDevice Router's web browser, first connect the EtherDevice Router's RJ45 Ethernet LAN ports to your Ethernet LAN, or directly to your PC's Ethernet card (NIC). You can use either a straight-through or cross-over Ethernet cable.

NOTE The EtherDevice Router's default LAN IP address is 192.168.127.254.

Perform the following steps to access the EtherDevice Router's web browser interface.

1. Start Internet Explorer and type the EtherDevice Router's LAN IP address in the Address field. Press Enter to establish the connection.



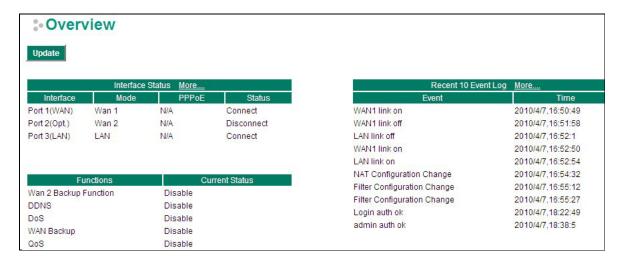
The web login page will open. Select the login account (Admin or User) and enter the Password (this
is the same as the Console password), and then click Login to continue. Leave the Password field blank
if a password has not been set.

NOTE By default, the EtherDevice Router's password is not set (i.e., is blank).

You may need to wait a few moments for the web page to be downloaded to your computer. Use the menu tree on the left side of the window to open the function pages to access each of the router's functions.

Features and Functions

In this chapter, we explain how to access the EtherDevice Router's configuration options, perform monitoring, and use administration functions. There are three ways to access these functions: (1) RS-232 console, (2) Telnet console, and (3) web browser.


The web browser is the most user-friendly way to configure the EtherDevice Router, since you can both monitor the EtherDevice Router and use administration functions from the web browser. An RS-232 or Telnet console connection only provides basic functions. In this chapter, we use the web browser to introduce the EtherDevice Router's configuration and monitoring functions.

Configuring Basic Settings
Network Settings
Network Redundancy
Static Routing and Dynamic Routing
Network Address Translation (NAT)
Firewall Settings
VPN (Virtual Private Network)
Traffic Prioritization
Configuring SNMP
Using Auto Warning
Using Monitor

Using System LogUsing HTTPs/SSL

The following topics are covered in this chapter:

The **Overview** page is divided into three major parts: Interface Status, Basic function status, and Recent 10 Event logs, and gives users a quick overview of the EtherDevice Router's current settings.

 ${\sf Click}\ \underline{{\sf More...}}\ {\sf at\ the\ top\ of\ the\ Interface\ Status\ table\ to\ see\ detailed\ information\ about\ all\ interfaces.}$

2 diam'r	More	25,010		
Interface	Mode		PPP0E	Status
Port 1(WAN)	Wan 1	N/A		Connect
Port 2(Opt.)	Wan 2	N/A		Disconnect
Port 3(LAN)	LAN	N/A		Connect

: Detail Interface Status

Update

WAN1

Connect Type	IP Address	Subnet Mask	MAC Address
DHCP_IP	192,168.2.106	255.255.255.0	00-09-ad-00-00-03
PPTP Enable	PPTP IP Address	PPPoE	Status
Disable	0.0.0.0	Disable	Connect
Rx Packets	Tx Packets	Rx Bytes	Tx Bytes
531874	379333	750705528	37464481
Rx Errors	Tx Errors	Gateway	PPTP Gateway
0	0	192.168.2.1	0.0.0.0

WAN2

Connect Type	IP Address	Subnet Mask	MAC Address
STATIC_IP	0.0.0.0	0.0.0.0	00-09-ad-00-00-02
PPTP Enable	PPTP IP Address	PPPoE	Status
Disable	0.0.0.0	Disable	Disconnect
Rx Packets	Tx Packets	Rx Bytes	Tx Bytes
0	0	0	0
Rx Errors	Tx Errors	Gateway	PPTP Gateway
0	0	0.0.0.0	0.0.0.0

LAN

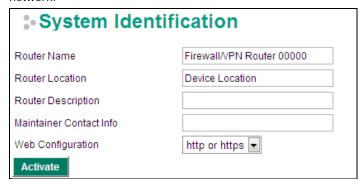
Connect Type	IP Address	Subnet Mask	MAC Address
STATIC_IP	192.168.127.254	255.255.255.0	00-09-ad-00-00-01
PPTP Enable	PPTP IP Address	PPPoE	Status
N/A	N/A	N/A	Connect
Rx Packets	Tx Packets	Rx Bytes	Tx Bytes
386347	538273	41326230	751464253
Rx Errors	Tx Errors	Gateway	PPTP Gateway
0	0	0.0.0.0	0.0.0.0

DNS Server List

Click More... at the top of the "Recent 10 Event Log" table to open the EventLogTable page.

EventLogTable

Page 36/36 ▼


Index	Bootup	Date	Time	System Startup Time	Event
351	63	2010/4/7	16:52:1	0d0h13m7s	LAN link off
352	63	2010/4/7	16:52:50	0d0h13m56s	WAN1 link on
353	63	2010/4/7	16:52:54	0d0h14m0s	LAN link on
354	63	2010/4/7	16:54:32	0d0h15m38s	NAT Configuration Change
355	63	2010/4/7	16:55:12	0d0h16m18s	Filter Configuration Change
356	63	2010/4/7	16:55:27	0d0h16m33s	Filter Configuration Change
357	63	2010/4/7	18:22:49	0d1h43m55s	Login auth ok
358	63	2010/4/7	18:38:5	0d1h59m11s	admin auth ok

Configuring Basic Settings

The Basic Settings group includes the most commonly used settings required by administrators to maintain and control the EtherDevice Router.

System Identification

The system identification section gives you an easy way to identify the different switches connected to your network.

Router name

Setting	Description	Factory Default
Max. 30 Characters This option is useful for specifying the role or application of		Firewall/VPN router
	different EtherDevice Router units.	[Serial No. of this
	E.g., Factory Router 1.	switch]

Router Location

Setting	Description	Factory Default
Max. 80 Characters	To specify the location of different EtherDevice Router units.	Device Location
	E.g., production line 1.	

Router Description

Setting	Description	Factory Default
Max. 30 Characters	Use this field to enter a more detailed description of the	None
	EtherDevice Router unit.	

Maintainer Contact Info

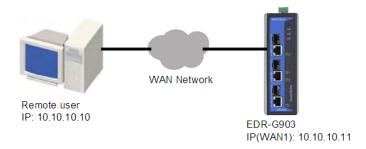
Setting	Description	Factory Default
Max. 30 Characters	Enter the contact information of the person responsible for	None
	maintaining this EtherDevice Router	

Web Configuration

Setting	Description	Factory Default
http or https	Users can connect to the EtherDevice Router router via http or	http or https
	https protocol.	
https only	Users can connect to the EtherDevice Router router via https	
	protocol only.	

Accessible IP

The EtherDevice Router uses an IP address-based filtering method to control access to EtherDevice Router units.

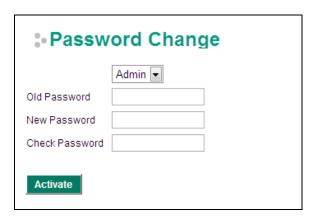

Accessible IP Settings allows you to add or remove "Legal" remote host IP addresses to prevent unauthorized access. Access to the EtherDevice Router is controlled by IP address. If a host's IP address is in the accessible IP table, then the host will have access to the EtherDevice Router. You can allow one of the following cases by setting this parameter:

- Only one host with the specified IP address can access this device.
 E.g., enter "192.168.1.1/255.255.255.255" to allow access to just the IP address 192.168.1.1.
- Any host on a specific subnetwork can access this device.
 E.g., enter "192.168.1.0/255.255.255.0" to allow access to all IPs on the subnet defined by this IP address/subnet mask combination.
- Any host can access the EtherDevice Router. (Disable this function by deselecting the Enable the accessible IP list option.)
- Any LAN can access the EtherDevice Router. (Disable this function by deselecting the LAN option to not allow any IP at the LAN site to access this device.)
 - E.g., If the LAN IP Address is set to 192.168.127.254/255.255.255.0, then IP addresses 192.168.127.1 /24 to 192.168.127.253/24 can access the EtherDevice Router.

The following table shows additional configuration examples:

Allowable Hosts	Input Format
Ay host	Disable
192.168.1.120	192.168.1.120 / 255.255.255.255
192.168.1.1 to 192.168.1.254	192.168.1.0 / 255.255.255.0
192.168.0.1 to 192.168.255.254	192.168.0.0 / 255.255.0.0
192.168.1.1 to 192.168.1.126	192.168.1.0 / 255.255.255.128
192.168.1.129 to 192.168.1.254	192.168.1.128 / 255.255.255.128

The Accessible IP list controls which devices can connect to the EtherDevice Router to change the configuration of the device. In the example shown below, the Accessible IP list in the EtherDevice Router contains 10.10.10.10, which is the IP address of the remote user's PC.



The remote user's IP address is shown below in the EtherDevice Router's Accessible IP list.

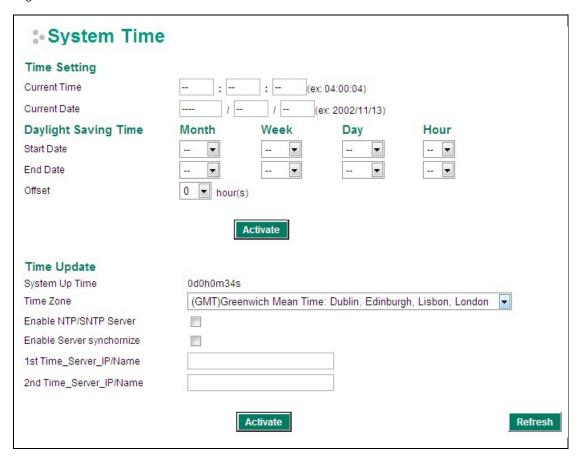
Password

The EtherDevice Router provides two levels of access privilege: "admin privilege" gives read/write access to all EtherDevice Router configuration parameters, and "user privilege" provides read access only. You will be able to view the configuration, but will not be able to make modifications.

ATTENTION!

 By default, the Password field is blank. If a Password is already set, then you will be required to type the Password when logging into the RS-232 console, Telnet console, or web browser interface.

Account


Setting	Description	Factory Default
Admin	"admin" privilege allows the user to modify all configurations.	Admin
User	"user" privilege only allows viewing device configurations.	

Password

Setting	Description	Factory Default
Old password	Type current password when changing the password	None
(max. 16 Characters)		
New password	Type new password when changing the password	None
(max. 16 Characters)		
Retype password	If you type a new password in the Password field, you will be	None
(max. 16 Characters)	required to retype the password in the Retype new password	
	field before updating the new password.	

Time

The **Time** configuration page lets users set the time, date, and other settings. An explanation of each setting is given below.

The EtherDevice Router has a time calibration function based on information from an NTP server or user specified Time and Date information. Functions such as Auto warning "Email" can add real-time information to the message.

NOTE

The EtherDevice Router has a real time clock so the user does not need to update the Current Time and Current Date to set the initial time for the EtherDevice Router after each reboot. This is especially useful when the network does not have an Internet connection for an NTP server, or there is no NTP server on the network.

Current Time

Setting	Description	Factory Default
User adjustable Time	The time parameter allows configuration of the local time in	None (hh:mm:ss)
	local 24-hour format.	

Current Date

Setting	Description	Factory Default
User adjustable date.	The date parameter allows configuration of the local date in	None
	yyyy/mm/dd format	(yyyy/mm/dd)

Daylight Saving Time

Daylight Saving Time (also know as DST or summer time) involves advancing clocks 1 hour during the summer to provide an extra hour of daylight in the evening.

Start Date

Setting	Description	Factory Default
User adjustable date.	The Start Date parameter allows users to enter the date that	None
	daylight saving time begins.	

End Date

Setting	Description	Factory Default
User adjustable date.	The End Date parameter allows users to enter the date that	None
	daylight saving time begins.	

Offset

Setting	Description	Factory Default
User adjustable date.	The offset parameter indicates how many hours forward the	None
	clock should be advanced.	

System Up Time

Indicates the ED-G903's up time from the last cold start. The unit is seconds.

Time Zone

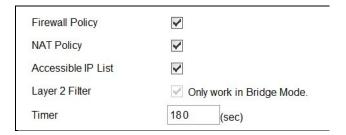
Setting	Description	Factory Default
User selectable time	The time zone setting allows conversion from GMT (Greenwich	GMT
zone	Mean Time) to local time.	

NOTE

Changing the time zone will automatically correct the current time. You should **configure the time zone before setting the time**.

Enable NTP/SNTP Server

Enable this function to configure the EtherDevice Router as a NTP/SNTP server on the network.


Enable Server synchronize

Enable this function to configure the EtherDevice Router as a NTP/SNTP client, It will synchronize the time information with another NTP/SNTP server.

Time Server IP/Name

Setting	Description	Factory Default
1st Time Server	IP or Domain address (e.g., 192.168.1.1, time.stdtime.gov.tw,	None
IP/Name	or time.nist.gov).	
2nd Time Server	The EtherDevice Router will try to locate the 2nd NTP Server if	
IP/Name	the 1st NTP Server fails to connect.	

SettingCheck

SettingCheck is a safety function for industrial users using a secure router. It provides a double confirmation mechanism for when a remote user changes the security policies, such as Firewall filter, NAT, and Accessible IP list. When a remote user changes these security polices, SettingCheck provides a means of blocking the connection from the remote user to the Firewall/VPN device. The only way to correct a wrong setting is to get help from the local operator, or go to the local site and connect to the device through the console port, which could take quite a bit of time and money. Enabling the SettingCheck function will execute these new policy changes temporarily until doubly confirmed by the user. If the user does not click the confirm button, the EtherDevice Router will revert to the previous setting.

Firewall Policy

Enables or Disables the SettingCheck function when the Firewall policies change.

NAT Policy

Enables or Disables the SettingCheck function when the NAT policies change.

Accessible IP List

Enables or Disables the SettingCheck function when the Accessible IP List changes.

Layer 2 Fiber

Enable or disable the SettingCheck function when the Layer 2 filter changes.

Timer

Setting	Description	Factory Default
10 to 3600 sec.	The timer waits this amount of time to double confirm when the	180 (sec.)
	user changes the policies	

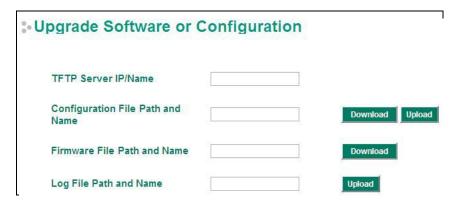
For example, if the remote user (IP: 10.10.10.10) connects to the EtherDevice Router and changes the accessible IP address to 10.10.10.12, or deselects the Enable checkbox accidently after the remote user clicks the Activate button, connection to the EtherDevice Router will be lost because the IP address is not in the EtherDevice Router's Accessible IP list.

If the user enables the SettingCheck function with the Accessible IP list and the confirmer Timer is set to 15 seconds, then when the user clicks the Activate button on the accessible IP list page, the EtherDevice Router will execute the configuration change and the web browser will try to jump to the SettingCheck Confirmed page automatically. Because the new IP list does not include the Remote user's IP address, the remote user cannot connect to the SettingCheck Confirmed page. After 15 seconds, the EtherDevice Router will roll back to the original Accessible IP List setting, allowing the remote user to reconnect to the EtherDevice Router and check what's wrong with the previous setting.

The page cannot be displayed

The page you are looking for is currently unavailable. The Web site might be experiencing technical difficulties, or you may need to adjust your browser settings.

Please try the following:


- Click the 😭 Refresh button, or try again later.
- If you typed the page address in the Address bar, make sure that it is spelled correctly.
- To check your connection settings, click the Tools menu, and then click Internet Options. On the Connections tab, click Settings. The settings should match those provided by your local area network (LAN) administrator or Internet service provider (ISP).
- See if your Internet connection settings are being detected.
 You can set Microsoft Windows to examine your network and automatically discover network connection settings (if your network administrator has enabled this setting).
 - Click the Tools menu, and then click Internet Options.
 - 2. On the Connections tab, click LAN Settings.
 - Select Automatically detect settings, and then click OK.

If the new configuration does not block the connection from the remote user to the EtherDevice Router, the user will see the SettingCheck Confirmed page, shown in the following figure. Click **Confirm** to save the configuration updates.

System File Update—by Remote TFTP

The EtherDevice Router supports saving your configuration file to a remote TFTP server or local host to allow other EtherDevice Router routers to use the same configuration at a later time, or saving the Log file for future reference. Loading pre-saved firmware or a configuration file from the TFTP server or local host is also supported to make it easier to upgrade or configure the EtherDevice Router.

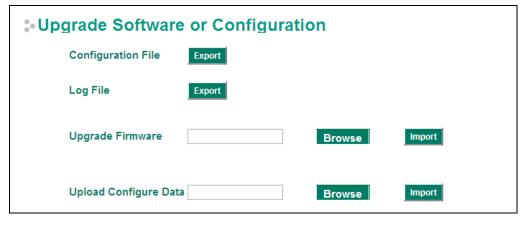
TFTP Server IP/Name

Setting	Description	Factory Default
IP Address of TFTP	The IP or name of the remote TFTP server. Must be configured	None
Server	before downloading or uploading files.	

Configuration File Path and Name

Setting	Description	Factory Default
Max. 40 Characters	The path and filename of the EtherDevice Router's	None
	configuration file in the TFTP server.	

Firmware File Path and Name


Setting	Description	Factory Default
Max. 40 Characters	The path and filename of the EtherDevice Router's firmware file	None

Log File Path and Name

Setting	Description	Factory Default
Max. 40 Characters	The path and filename of the EtherDevice Router's log file	None

After setting up the desired path and filename, click **Activate** to save the setting. Next, click **Download** to download the file from the remote TFTP server, or click **Upload** to upload a file to the remote TFTP server.

System File Update—by Local Import/Export

Configuration File

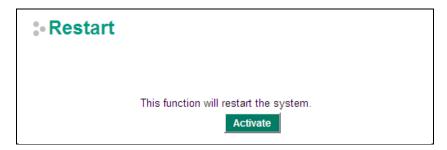
Click **Export** to export the configuration file of the EtherDevice Router to the local host.

Log File

Click Export to export the Log file of the EtherDevice Router to the local host.

NOTE

Some operating systems will open the configuration file and log file directly in the web page. In such cases, right click the **Export** button and then save as a file.


Upgrade Firmware

To import a firmware file into the EtherDevice Router, click **Browse** to select a firmware file already saved on your computer. The upgrade procedure will proceed automatically after clicking Import. This upgrade procedure will take a couple of minutes to complete, including the boot-up time.

Upload Configuration Data

To import a configuration file to the EtherDevice Router, click **Browse** to select a configuration file already saved on your computer. The upgrade procedure will proceed automatically after clicking Import.

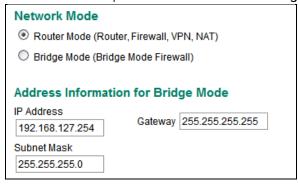
Restart

This function is used to restart the EtherDevice Router router.

Reset to Factory Default

The **Reset to Factory Default** option gives users a quick way of restoring the EtherDevice Router's configuration settings to their factory default values. This function is available in the console utility (serial or Telnet), and web browser interface.

NOTE


After activating the Factory Default function, you will need to use the default network settings to re-establish a web-browser or Telnet connection with your EtherDevice Router.

Network Settings

Mode Configuration

Network Mode

EtherDevice Router provides Router Mode and Bridge Mode operation for different applications:

Router Mode

In this mode, EtherDevice Router operates as a gateway between different networks.

- · Each interface (WAN1, WAN2 and LAN) has its own IP addresses & different subnet
- · It provides Routing, Firewall, VPN and NAT functions
- · Default setting of EtherDevice Router

Bridge Mode

In this mode, EtherDevice Router operates as a Bridge mode firewall (or call transparent firewall) in a single subnet. Users could simply insert EtherDevice Router into the existing single subnet without the need to reconfigure the original subnet into different subnets and without the need to reconfigure the IP address of existing devices.

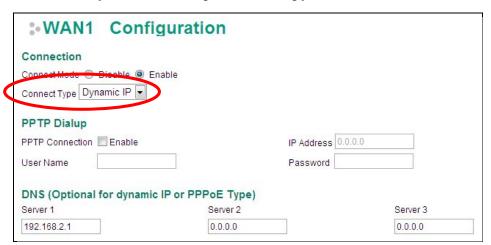
- EtherDevice Router only has one IP address, Network mask and Gateway.
- · VPN, NAT, WAN backup, VRRP, DHCP, Dynamic DNS are not supported in this mode

User could select the appropriate operation mode and press **Activate** to change the mode of EtherDevice Router. Change operation mode would take around 30-60 seconds to reboot system!!! If the webpage is no response after 30-60 seconds, please refresh webpage or press F5.

WAN1 Configuration

Connection

Note that there are three different connection types for the WAN1 interface: Dynamic IP, Static IP, and PPPoE. A detailed explanation of the configuration settings for each type is given below.


Connection Mode

Setting	Description	Factory Default
Enable or Disable	Enable or Disable the WAN interface	Enable

Connection Type

Setting	Description	Factory Default
Static IP, Dynamic IP,	Setup the connection type	Dynamic IP
PPPoE		

Detailed Explanation of Dynamic IP Type

PPTP Dialup

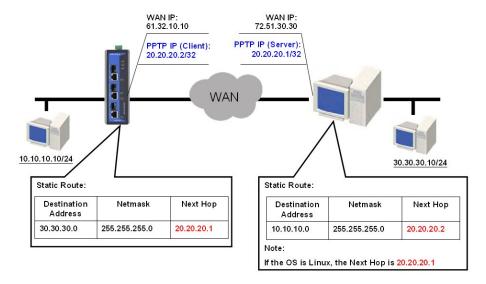
Point-to-Point Tunneling Protocol is used for Virtual Private Networks (VPN). Remote users can use PPTP to connect to private networks from public networks.

PPTP Connection

Setting	Description	Factory Default
Enable or Disable	Enable or Disable the PPTP connection	None

IP Address

Setting	Description	Factory Default
IP Address	The PPTP service IP address	None

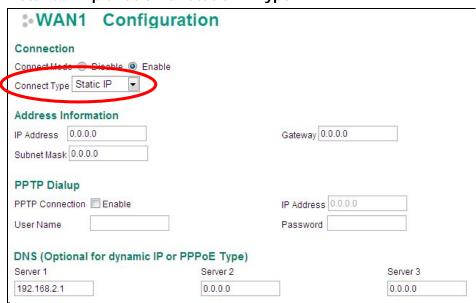

User Name

Setting	Description	Factory Default
Max. 30 Characters	The Login username when dialing up to PPTP service	None

Password

Setting	Description	Factory Default
Max. 30 characters	The password for dialing the PPTP service	None

Example: Suppose a remote user (IP: 10.10.10.10) wants to connect to the internal server (private IP: 30.30.30.10) via the PPTP protocol. The IP address for the PPTP server is 20.20.20.1. The necessary configuration settings are shown in the following figure.


DNS (Doman Name Server; optional setting for Dynamic IP and PPPoE types)

Server 1/2/3

Setting	Description	Factory Default
IP Address	The DNS IP address	None

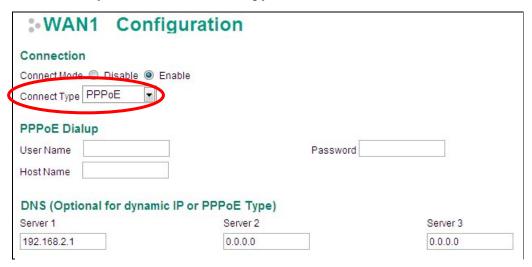
NOTE The priority of a manually configured DNS will higher than the DNS from the PPPoE or DHCP server.

Detailed Explanation of Static IP Type

Address Information

IP Address

Setting	Description	Factory Default
IP Address	The interface IP address	None


Subnet Mask

Setting	Description	Factory Default
IP Address	The subnet mask	None

Gateway

Setting	Description	Factory Default
IP Address	The Gateway IP address	None

Detailed Explanation of PPPoE Type

PPPoE Dialup

User Name

Setting	Description	Factory Default
Max. 30 characters	The User Name for logging in to the PPPoE server	None

Host Name

Setting	Description	Factory Default
Max. 30 characters	User-defined Host Name of this PPPoE server	None

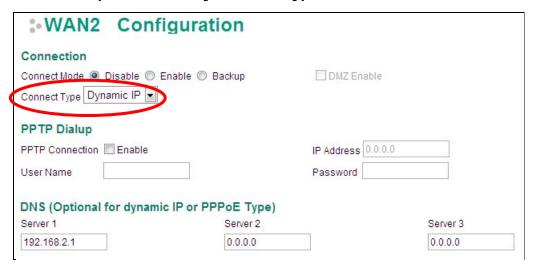
Password

Setting	Description	Factory Default
Max. 30 characters	The login password for the PPPoE server	None

WAN2 Configuration (includes DMZ Enable)

Connection

Note that there are three different connection types for the WAN2 interface: Dynamic IP, Static IP, and PPPoE. A detailed explanation of the configuration settings for each type is given below.


Connection Mode

Setting	Description	Factory Default
Enable or Disable	Enable or Disable the WAN interface.	None
Backup	Enable WAN Backup mode	
DMZ	Enable DMZ mode (can only be enabled when the connection	
	type is set to Static IP)	

Connection Type

Setting	Description	Factory Default
Static IP, Dynamic IP,	Configure the connection type	Dynamic IP
PPPoE		

Detailed Explanation of Dynamic IP Type

PPTP Dialup

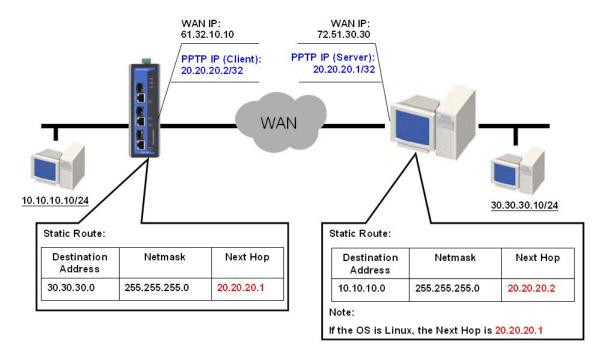
Point-to-Point Tunneling Protocol is used for Virtual Private Networks (VPN). Remote users can use PPTP to connect to private networks from public networks.

PPTP Connection

Setting	Description	Factory Default
Enable or Disable	Enable or Disable the PPTP connection	None

IP Address

Setting	Description	Factory Default
IP Address	The PPTP service IP address	None

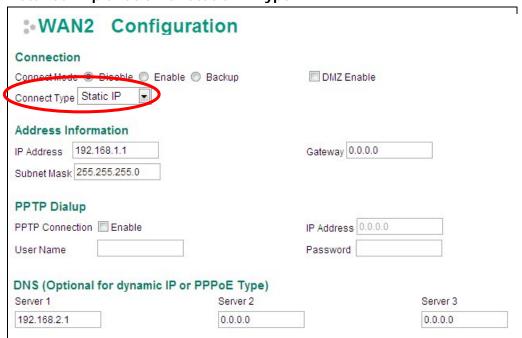

User name

Setting	Description	Factory Default
Max. 30 Characters	The Login username when dialing up to PPTP service	None

Password

Setting	Description	Factory Default
Max. 30 characters	The password for dialing the PPTP service	None

Example: Suppose a remote user (IP: 10.10.10.10) wants to connect to the internal server (private IP: 30.30.30.10) via the PPTP protocol. The IP address for the PPTP server is 20.20.20.1. The necessary configuration settings are shown in the following figure.


DNS (Doman Name Server; optional setting for Dynamic IP and PPPoE types)

Server 1/2/3

Setting	Description	Factory Default
IP Address	The DNS IP Address	None

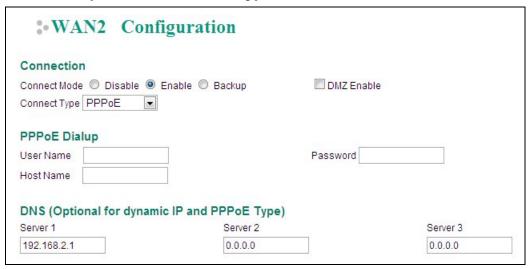
NOTE The priority of a manually configured DNS will higher than the DNS from the PPPoE or DHCP server.

Detailed Explanation of Static IP Type

Address Information

IP Address

Setting	Description	Factory Default
IP Address	The interface IP address	None


Subnet Mask

Setting	Description	Factory Default
IP Address	The subnet mask	None

Gateway

Setting	Description	Factory Default
IP Address	The Gateway IP address	None

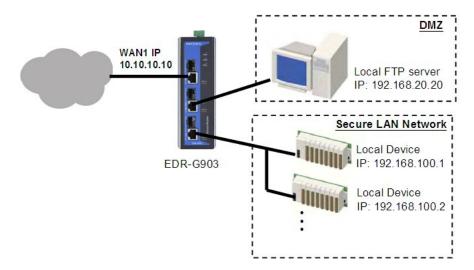
Detailed Explanation of PPPoE Type

PPPoE Dialup

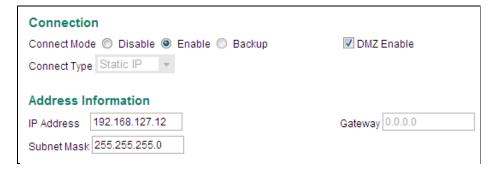
User Name

Setting	Description	Factory Default
Max. 30 characters	The User Name for logging in to the PPPoE server	None

Host Name


Setting	Description	Factory Default
Max. 30 characters	User-defined host name for this PPPoE server	None

Password


Setting	Description	Factory Default
Max. 30 characters	The login password for this PPPoE server	None

Using DMZ Mode

A DMZ (demilitarized zone) is an isolated network for devices—such as data, FTP, web, and mail servers connected to a LAN network—that need to frequently connect with external networks. The deployment of an FTP server in a DMZ is illustrated in the following figure.

DMZ mode is configured on the **WAN2 configuration** web page. Set Connect Mode to Enable, Connect Type to Static IP, and checkmark the DMZ Enable check box. You will also need to input the IP Address and Subnet Mask. Click the **Activate** button to save the settings.

NOTE

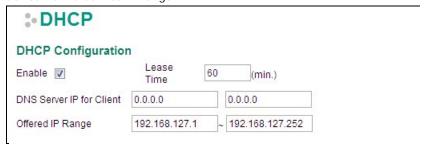
WAN2 configuration and DMZ mode are only available on EDR-G903

LAN Interface

A basic application of an industrial Firewall/VPN device is to provide protection when the device is connected to a LAN. In this regard, the LAN port connects to a secure (or trusted) area of the network, whereas the WAN1 and WAN2/DMZ ports connect to an insecure (or untrusted) area.

LAN IP Configuration

IP Address


Setting	Description	Factory Default
IP Address	The LAN interface IP address	192.168.127.254

Subnet Mask

Setting	Description	Factory Default
IP Address	The subnet mask	255.255.255.0

DHCP Server

The EtherDevice Router provides a DHCP (Dynamic Host Configuration Protocol) server function for LAN interfaces. When configured, the EtherDevice Router will automatically assign an IP address to a Ethernet device from a defined IP range.

DHCP configuration

DHCP Server Enable/Disable

Setting	Description	Factory Default
Enable or Disable	Enable or Disable DHCP server function	Enable

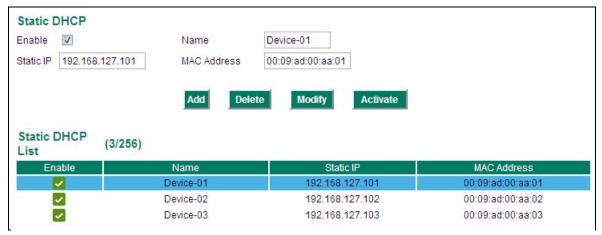
Lease Time

Setting	Description	Factory Default
≥ 5 min.	The lease time of the DHCP server	60 (min.)

DNS Server IP for Client

Setting	Description	Factory Default
IP Address	The DHCP server's IP address	None

Offered IP Range


Setting	Description	Factory Default
IP address	The offered IP address range for the DHCP server	192.168.127.1 to
		192.168.127.252

NOTE

- 1. The DHCP server is only available for LAN interfaces.
- 2. The Offered IP address range must be in the same Subnet on the LAN.

Static DHCP List

Use the Static DHCP list to ensure that devices connected to the EtherDevice Router always use the same IP addresss. The static DHCP list matches IP addresses to MAC addresses.

In the above example, a device named "Device-01" was added to the Static DHCP list, with static IP address set to 192.168.127.101 and MAC address set to 00:09:ad:00:aa:01. When a device with MAC address of 00:09:ad:00:aa:01 is connected to the EtherDevice Router, the EtherDevice Router will offer the IP address 192.168.127.101 to this device.

Enable or Disable

Setting	Description	Factory Default
Enable or Disable	Enable or Disable the selected device in the Static DHCP List	Disabled

Name

Setting	Description	Factory Default
Max. 30 characters	The name of the selected device in the Static DHCP List	None

Static IP Address

Setting	Description	Factory Default
IP Address	The IP address of the selected device	None

MAC Address

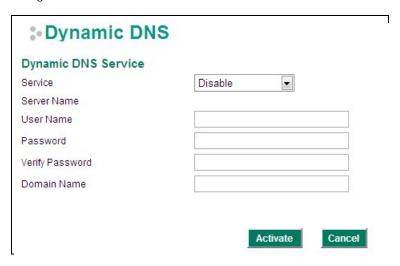
Setting	Description	Factory Default
MAC Address	The MAC address of the selected device	None

Clickable Buttons

Add: Use the Add button to input a new DHCP list. The Name, Static IP, and MAC address must be different than for the existing list.

Delete: Use the Delete button to delete the Static DHCP list. Click on a list to select it (the background color of the device will change to blue) and then click the Delete button.

Modify: To modify the information for a particular list, click on a list to select it (the background color of the device will change to blue), modify the information as needed using the check boxes and text input boxes near the top of the browser window, and then click Modify.


DHCP Leased List

Use the DHCP Leased List to view the current DHCP clients.

Dynamic DNS

Dynamic DNS (Domain Name Server) allows you to use a domain name (e.g., moxa.edr-g903) to connect to the EtherDevice Router. The EtherDevice Router can connect to 4 free DNS servers and register the user configurable Domain name in these servers.

Service

Setting	Description	Factory Default
> Disable	Disable or select the DNS server	Disable
> freedns.afraid.org		
> www.3322.org		
> members.dyndns.org		
> dynupdate.no-ip.com		

User Name

Setting	Description	Factory Default
Max. 30 characters	The DNS server's user name	None

Password

Setting	Description	Factory Default
Max. 30 characters	The DNS server's password	None

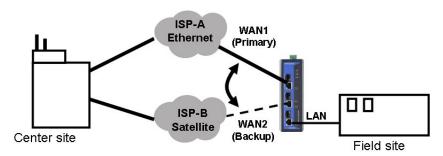
Verify Password

Setting	Description	Factory Default
Max. 30 characters	Verifies the DNS server password	None

Domain name

Setting	Description	Factory Default
Max. 30 characters	The DNS server's domain name	None

Network Redundancy


Moxa EtherDevice Router provides 2 types of network redundancy functions: WAN backup (EDR-G903 only) and VRRP. The EtherDevice Router has two WAN interfaces: WAN1 is the primary WAN interface and WAN2 is the backup interface. When the EtherDevice Router detects that connection WAN1 has failed (Link down or Ping fails), it will switch the communication path from WAN1 to WAN2 automatically. When WAN1 recovers, the major communication path will return to WAN1.

WAN Backup (EDR-G903 only)

How Dual WAN Backup Works

A power utility at a field site connects to a central office via two different ISPs (Internet Service Providers). ISP-A uses Ethernet and ISP-B uses satellite for data transmission, with Ethernet used as the major connection and the satellite as the backup connection. This makes sense since the cost of transmitting through the satellite is greater than the cost of transmitting over the Ethernet. Traditional solutions would use two routers to connect to the different ISPs. In this case, if the connection to the primary ISP fails, the connection must be switched to the backup ISP manually.

The EtherDevice Router's WAN backup function checks the link status and the connection integrity between the EtherDevice Router and the ISP or central office. When the primary WAN interface fails, it will switch to the backup WAN automatically to keep the connection alive.

When configuring the EtherDevice Router, choose one of the two following conditions to activate the backup path:


- · Link Check: WAN1 link down
- Ping Check: Sends ping commands to a specific IP address (e.g., the IP address of the ISP's server) from WAN1 based on user configurable Time Interval, Retry, and Timeout.

When the WAN backup function is enabled and the Link Check or Ping Check for the WAN1 interface fails, the backup interface (WAN2) will be enabled as the primary interface.

WAN Backup Configuration

Select Backup for the WAN2/DMZ Connect Mode, and then go to the **Network Redundancy** → **WAN Backup** setting page for the WAN Backup configuration.

Link Check

Setting	Description	Factory Default
Enable or Disable	Activate Backup function by checking the link status of WAN1	Disabled

Ping Check

Setting	Description	Factory Default
Enable or Disable	Activates the Backup function if unable to ping from the	Disabled
	EtherDevice Router to a specified IP address.	

ΙP

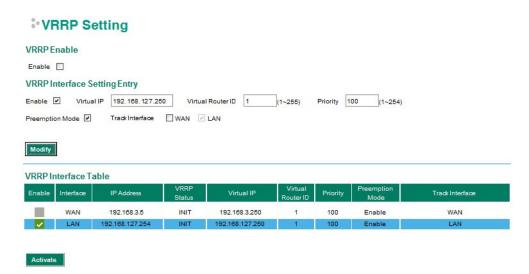
Setting	Description	Factory Default
IP address	The EtherDevice Router will check the ping integrity of this IP	None
	Address if the Ping Check function is Enabled	

NOTE The IP address for Ping Check function should be on the network segment of WAN1.

Interval

Setting	Description	Factory Default
1 to 1000 sec	User can set up a different Ping Interval for a different network	180 sec.
	topology	

Retry


Setting	Description	Factory Default
1 to 100	User can configure the number of retries. If the number of	3
	continuous retries exceeds this number, the EtherDevice	
	Router will activate the backup path.	

Timeout

Setting	Description	Factory Default
100 to 10000 (ms)	The timeout criterion of Ping Check	3000 ms

Virtual Router Redundancy Protocol (VRRP)

VRRP Settings

The Virtual Router Redundancy Protocol (VRRP) feature can solve the problem with static configuration. VRRP enables a group of routers to form a single virtual router with a virtual IP address. The LAN clients can then be configured with the virtual router's virtual IP address as their default gateway. The virtual router is the combination of a group of routers, and is also known as a VRRP group.

Enable

Setting	Description	Factory Default
Enable	Enables VRRP	Disable

VRRP Interface Setting Entry

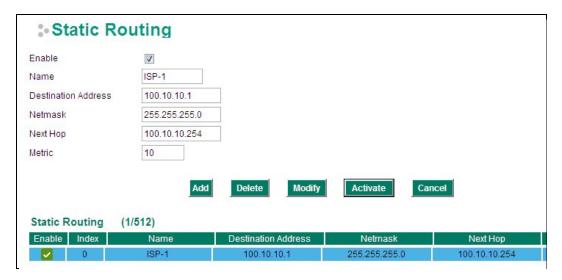
Setting	Description	Factory Default
Enable	Enables VRRP entry	Disabled
Virtual IP	L3 switches / routers in the same VRRP group must be set to	0.0.0.0
	the same virtual IP address as the VRRP ID. This virtual IP	
	address must belong to the same address range as the real IP	
	address of the interface.	
Virtual Router ID	Virtual Router ID is used to assign a VRRP group. The L3	0
	switches / routers, which operate as master / backup, should	
	have the same ID. Moxa L3 switches / routers support one	
	virtual router ID for each interface. IDs can range from 1 to	
	255.	
Priority	Determines priority in a VRRP group. The priority value range is	100
	1 to 255 and the 255 is the highest priority. If several L3	
	switches / routers have the same priority, the router with	
	higher IP address has the higher priority. The usable range is "1	
	to 255".	
Preemption Mode	Determines whether a backup L3 switch / router will take the	Enabled
	authority of master or not.	
Track Interface	The Track Interface is used to track specific interface within the	Disable
	router that can change the status of the virtual router for a	
	VRRP Group. For example, the WAN interface can be tracked	
	and if the link is down, the other backup router will become the	
	new master of the VRRP group.	

Static Routing and Dynamic Routing

The EtherDevice Router supports two routing methods: static routing and dynamic routing. Dynamic routing makes use of RIP V1/V1c/V2. You can either choose one routing method, or combine the two methods to establish your routing table. A routing entry includes the following items: the destination address, the next hop address (which is the next router along the path to the destination address), and a metric that represents the cost we have to pay to access a different network.

Static Route

You can define the routes yourself by specifying what is the next hop (or router) that the EtherDevice Router forwards data for a specific subnet. The settings of the Static Route will be added to the routing table and stored in the EtherDevice Router.


RIP (Routing Information Protocol)

RIP is a distance vector-based routing protocol that can be used to automatically build up a routing table in the EtherDevice Router.

The EtherDevice Router can efficiently update and maintain the routing table, and optimize the routing by identifying the smallest metric and most matched mask prefix.

Static Routing

The Static Routing page is used to configure the EtherDevice Router's static routing table.

Enable

Click the checkbox to enable Static Routing.

Name

The name of this Static Router list

Destination Address

You can specify the destination IP address.

Netmask

This option is used to specify the subnet mask for this IP address.

Next Hop

This option is used to specify the next router along the path to the destination.

Metric

Use this option to specify a "cost" for accessing the neighboring network.

Clickable Buttons

Add

For adding an entry to the Static Routing Table.

Delete

For removing selected entries from the Static Routing Table.

Modify

For modifying the content of a selected entry in the Static Routing Table.

NOTE

The entries in the Static Routing Table will not be added to the EtherDevice Router's routing table until you click the Activate button.

RIP (Routing Information Protocol)

RIP is a distance-vector routing protocol that employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from the source to a destination.

The RIP page is used to set up the RIP parameters.

RIP State

Setting	Description	Factory Default
Enable/Disable	Enable or Disable RIP protocol	Disable

Enable WAN 1 RIP

Check the checkbox to enable RIP in the WAN 1 interface.

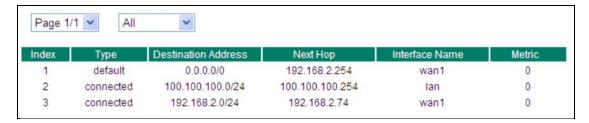
Enable WAN 2 RIP

Check the checkbox to enable RIP in the WAN 2 interface.

Enable LAN RIP

Check the checkbox to enable RIP in the LAN interface.

RIP V1 only


Check the checkbox to enable only RIP V1 interfaces.

Redistributed Static Router

Check the checkbox to enable the Redistributed Static Route function. The entries that are set in a static route will be re-distributed if this option is enabled.

Routing Table

The Routing Table page shows all routing entries.

All Routing Entry List

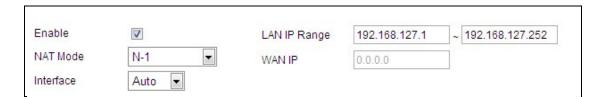
Setting	Description	Factory Default
All	Show all routing entries	N/A
Connected	Show connected routing entries	N/A
Static	Show Static routing entries	N/A
RIP	Show RIP routing entries	N/A
Others	Show others routing entries	N/A

Network Address Translation (NAT)

NAT Concept

NAT (Network Address Translation) is a common security function for changing the IP address during Ethernet packet transmission. When the user wants to hide the internal IP address (LAN) from the external network (WAN), the NAT function will translate the internal IP address to a specific IP address, or an internal IP address range to one external IP address. The benefits of using NAT include:

- Uses the N- 1 or Port forwarding Nat function to hide the Internal IP address of a critical network or device to increase the level of security of industrial network applications.
- Uses the same private IP address for different, but identical, groups of Ethernet devices. For example, 1-to-1 NAT makes it easy to duplicate or extend identical production lines.


NOTE The NAT function will check if incoming or outgoing packets match the policy. It starts by checking the packet with the first policy (Index=1); if the packet matches this policy, the EtherDevice Router will translate the address immediately and then start checking the next packet. If the packet does not match this policy, it will check with the next policy.

NOTE The maximum number of NAT policies for the EtherDevice Router is 128.

N-to-1 NAT

If the user wants to hide the Internal IP address from users outside the LAN, the easiest way is to use the N-to-1 (or N-1) NAT function. The N-1 NAT function replaces the source IP Address with an external IP address, and adds a logical port number to identify the connection of this internal/external IP address. This function is also called "Network Address Port Translation" (NAPT) or "IP Masquerading."

The N-1 NAT function is a one way connection from an internal secure area to an external non-secure area. The user can initialize the connection from the internal to the external network, but may not be able to initialize the connection from the external to the internal network.

Enable/Disable NAT Policy

Setting	Description	Factory Default
Enable or Disable	Enable or disable the selected NAT policy	Enabled

NAT Mode

Setting	Description	Factory Default
N-1	Select the NAT types	N-1
1-1		
Port Forwarding		

Interface (N-1 mode)

Setting	Description	Factory Default
Auto	Select the Interface for this NAT Policy	Auto
WAN1		
WAN2		

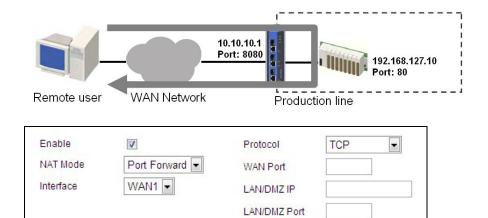
The EtherDevice Router provides a Dual WAN backup function for network redundancy. If the interface is set to Auto, the NAT Mode is set to N-1, and the WAN backup function is enabled, the primary WAN interface is WAN1. If the WAN1 connection fails, the WAN interface of this N-1 policy will apply to WAN2 and switch to WAN2 for N-1 outgoing traffic until the WAN1 interface recovers.

IP Range

Setting	Description	Factory Default
IP address	Select the Internal IP range for IP translation to WAN IP	None
	address	

WAN IP (N-1 mode)

Setting	Description	Factory Default
IP address	The IP address of the user selected interface (WAN1, WAN2,	None
	and Auto) in this N-to-1 policy.	


NOTE The EtherDevice Router will add an N-1 policy from the source IP, 192.168.127.1 to 192.168.127.252 to the WAN1 interface after activating the Factory Default.

Port Forwarding

If the initial connection is from outside the LAN, but the user still wants to hide the Internal IP address, one way to do this is to use the Port Forwarding NAT function.

The user can specify the port number of an external IP address (WAN1 or WAN2) in the Port Forwarding policy list. For example, if the IP address of a web server in the internal network is 192.168.127.10 with port 80, the user can set up a port forwarding policy to let remote users connect to the internal web server from external IP address 10.10.10.10 through port 8080. The EtherDevice Router will transfer the packet to IP address 192.168.127.10 through port 80.

The Port Forwarding NAT function is one way of connecting from an external insecure area (WAN) to an internal secure area (LAN). The user can initiate the connection from the external network to the internal network, but will not able to initiate a connection from the internal network to the external network.

Enable/Disable NAT policy

Setting	Description	Factory Default
Enable or Disable	Enable or disable the selected NAT policy	Enabled

NAT Mode

Setting	Description	Factory Default
N-1	Select the NAT types	N-1
1-1		
Port Forward		

Interface (Port Forward mode)

Setting	Description	Factory Default
WAN1	Select the Interface for this NAT Policy	WAN1
WAN2		

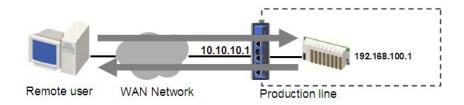
Protocol (Port Forward mode)

Setting	Description	Factory Default
TCP	Select the Protocol for NAT Policy	TCP
UDP		
TCP & UDP		

WAN Port (Port Forward mode)

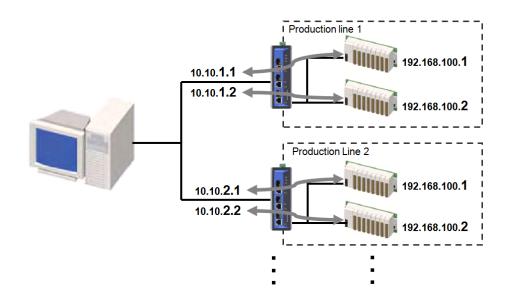
Setting	Description	Factory Default
1 to 65535	Select a specific WAN port number	None

LAN/DMZ IP (Port Forward mode)


Setting	Description	Factory Default
IP Address	The translated IP address in the internal network	None

LAN/DMZ Port (Port Forward mode)

Setting	Description	Factory Default
1 to 65535	The translated port number in the internal network	None


1-to-1 NAT

If the internal device and external device need to communicate with each other, choose 1-to-1 NAT, which offers bi-directional communication (N-to-1 and Port forwarding are both single-directional communication NAT functions).

1-to-1 NAT is usually used when you have a group of internal servers with private IP addresses that must connect to the external network. You can use 1-to-1 NAT to map the internal servers to public IP addresses. The IP address of the internal device will not change.

The figure below illustrates how a user could extend production lines, and use the same private IP addresses of internal devices in each production line. The internal private IP addresses of these devices will map to different public IP addresses. Configuring a group of devices for 1-to-1 NAT is easy and straightforward.

1-to-1 NAT Setting for EDR-G903 in Production Line 1

NAT List (2/0	64)

Enable	Index	Protocol	Source IP	Source Port	Destination IP
✓	1		192.168.100.1	_	10.10.1.1
✓	2	-	192.168.100.2		10.10.1.2

1-to-1 NAT Setting for EDR-G903 in Production Line 2

NAT List (2	64
------------	---	----

	,-	/			
Enable	Index	Protocol	Source IP	Source Port	Destination IP
✓	1		192.168.100.1	_	10.10.2.1
✓	2	-	192.168.100.2		10.10.2.2

Enable/Disable NAT policy

Setting	Description	Factory Default
Enable or Disable	Enable or disable the selected NAT policy	None

NAT Mode

Setting	Description	Factory Default
N-1	Select the NAT types	None
1-1		
Port Forward		

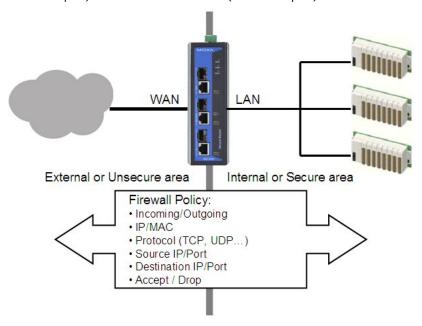
Interface (1-1 NAT type)

Setting	Description	Factory Default
WAN1	Select the Interface for this NAT Policy	WAN1
WAN2		

LAN/DMZ IP (1-1 NAT type)

Setting	Description	Factory Default
IP Address	Select the Internal IP address in LAN/DMZ network area	None

WAN IP (1-1 NAT type)


Setting	Description	Factory Default
IP Address	Select the external IP address in WAN network area	None

NOTE The EtherDevice Router can obtain an IP address via DHCP or PPPoE. However, if this dynamic IP address is the same as the WAN IP for 1-to-1 NAT, then the 1-to-1 NAT function will not work. For this reason, we recommend disabling the DHCP/PPPoE function when using the 1-to-1 NAT function.

Firewall Settings

Firewall Policy Concept

A firewall device is commonly used to provide secure traffic control over an Ethernet network, as illustrated in the following figure. Firewall devices are deployed at critical points between an external network (the non-secure part) and an internal network (the secure part).

Firewall Policy Overview

The EtherDevice Router provides a Firewall Policy Overview that lists firewall policies by interface direction.

Select the **From** interface and **To** interface and then click the **Show** button. The Policy list table will show the policies that match the From-To interface.

Interface From/To

Setting	Description	Factory Default
AII (WAN1/WAN2/LAN)	Select the From Interface and To interface	From All to All
WAN1		
WAN2		
LAN		

Firewall Policy Configuration

The EtherDevice Router's Firewall policy provides secure traffic control, allowing users to control network traffic based on the following parameters.

Interface From/To

Setting	Description	Factory Default
AII (WAN1/WAN2/LAN)	Select the From Interface and To interface	From All to All
WAN1		
WAN2		
LAN		

Quick Automation Profile

Setting	Description	Factory Default
Refer to the "Quick	Select the Protocol parameters in this Firewall Policy	None
Automation Profile"		
section on page 3-29.		

Service

Setting	Description	Factory Default
IP Filter	This Firewall policy will filter by IP address	IP Filter
MAC Filter	This Firewall policy will filter by MAC address	

Target

Setting	Description	Factory Default
Accept	The packet will penetrate the firewall when it matches this	Accept
	firewall policy	
Drop	The packet will not penetrate the firewall when it matches this	
	firewall policy	

Source IP

Setting	Description	Factory Default
All (IP Address)	This Firewall Policy will check all Source IP addresses in the	All
	packet	
Single (IP Address)	This Firewall Policy will check single Source IP addresses in the	
	packet	
Range (IP Address)	This Firewall Policy will check multiple Source IP addresses in	
	the packet	

Source Port

Setting	Description	Factory Default
All (Port number)	This Firewall Policy will check all Source port numbers in the	All
	packet	
Single (Port number)	This Firewall Policy will check single Source Port numbers in the	
	packet	
Range (Port number)	This Firewall Policy will check multiple Source port numbers in	
	the packet	

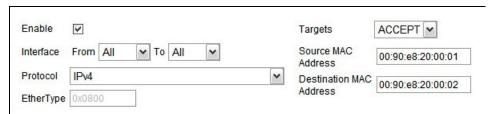
Destination IP

Setting	Description	Factory Default
All (IP Address)	This Firewall Policy will check all Destination IP addresses in the	All
	packet	
Single (IP Address)	This Firewall Policy will check single Destination IP addresses in	
	the packet	
Range (IP Address)	This Firewall Policy will check multiple Destination IP addresses	
	in the packet	

Destination Port

Setting	Description	Factory Default
All (Port number)	This Firewall Policy will check all Destination port numbers in	All
	the packet	
Single (Port number)	This Firewall Policy will check single Destination Port numbers	
	in the packet	
Range (Port number)	This Firewall Policy will check multiple Destination port	
	numbers in the packet	

NOTE


The EtherDevice Router's firewall function will check if incoming or outgoing packets match the firewall policy. It starts by checking the packet with the first policy (Index=1); if the packet matches this policy, it will accept or drop the packet immediately and then check the next packet. If the packet does not match this policy it will check with the next policy.

NOTE

The maximum number of Firewall policies for the EtherDevice Router is 256.

Layer 2 Policy Setup

In Bridge Mode, the EtherDevice Router provides an advanced Layer 2 Firewall policy for secure traffic control, which depends on the following parameters:

Interface From/To

Setting	Description	Factory Default
AII (WAN1/WAN2/LAN)	Select the From Interface and To interface	None
WAN1		
WAN2		
LAN		

Protocol

Setting	Description	Factory Default
Refer to table	Select the Layer 2 Protocol in this Firewall Policy	None
"EtherType for Layer 2		
Protocol" for a more		
detailed description		

EtherType

Setting	Description	Factory Default
0x0600 to 0xFFFF	When Protocol is set to "Manual" you can set up EtherType	None
	manually	

Target

Setting	Description	Factory Default
Accept	The packet will pass the Firewall when it matches this Firewall policy	None
Drop	The packet will not pass the Firewall when it matches this Firewall policy	None

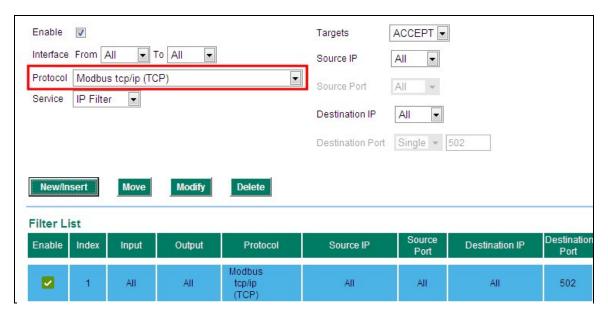
Source MAC Address

Setting	Description	Factory Default
Mac Address	This Firewall Policy will check all Source MAC addresses of the	00:00:00:00:00
	packet	

Destination MAC Address

Setting	Description	Factory Default
Mac Address	This Firewall Policy will check all destination MAC addresses of	00:00:00:00:00:00
	the packet	

The following table shows the Layer 2 protocol types commonly used in Ethernet frames.


EtherType for Layer 2 Protocol

Туре	Layer 2 Protocol
0x0800	IPv4 (Internet Protocol version 4)
0x0805	X.25
0x0806	ARP (Address Resolution Protocol)
0x0808	Frame Relay ARP
0x08FF	G8BPQ AX.25 Ethernet Packet
0x6000	DEC Assigned proto
0x6001	DEC DNA Dump/Load
0x6002	DEC DNA Remote Console
0x6003	DEC DNA Routing
0x6004	DEC LAT
0x6005	DEC Diagnostics
0x6006	DEC Customer use
0x6007	DEC Systems Comms Arch
0x6558	Trans Ether Bridging
0x6559	Raw Frame Relay
0x80F3	Appletalk AARP
0x809B	Appletalk
0x8100	8021Q VLAN tagged frame
0x8137	Novell IPX
0x8191	NetBEUI
0x86DD	IPv6 (Internet Protocol version 6)
0x880B	PPP
0x884C	MultiProtocol over ATM
0x8863	PPPoE discovery messages
0x8864	PPPoE session messages
0x8884	Frame-based ATM Transport over Ethernet
0x9000	Loopback

Quick Automation Profile

Ethernet Fieldbus protocols are popular in industrial automation applications. In fact, many Fieldbus protocols (e.g., EtheNet/IP and Modbus TCP/IP) can operate on an industrial Ethernet network, with the Ethernet port number defined by IANA (Internet Assigned Numbers Authority). The EtherDevice Router provides an easy to use function called **Quick Automation Profile** that includes 45 different pre-defined profiles (Modbus TCP/IP, Ethernet/IP, etc.), allowing users to create an industrial Ethernet Fieldbus firewall policy with a single click.

For example, if the user wants to create a Modbus TCP/IP firewall policy for an internal network, the user just needs to select the **Modbus TCP/IP(TCP)** or **Modbus TCP/IP(UDP)** protocol from the **Protocol** drop-down menu on the **Firewall Policy Setting** page.

The following table shows the Quick Automation Profile for Ethernet Fieldbus Protocol and the corresponding port number

Ethernet Fieldbus Protocol	Port Number
EtherCat port (TCP)	34980
EtherCat port (UDP)	34980
EtherNet/IP I/O (TCP)	2222
EtherNet/IP I/O (UDP)	2222
EtherNet/IP Messaging (TCP)	44818
EtherNet/IP Messaging (UDP)	44818
FF Annunciation (TCP)	1089
FF Annunciation (UDP)	1089
FF Fieldbus Message (TCP)	1090
FF Fieldbus Message (UDP)	1090
FF System Management (TCP)	1091
FF System Management (UDP)	1091
FF LAN Redundancy Port (TCP)	3622
FF LAN Redundancy Port (UDP)	3622
LonWorks (TCP)	2540
LonWorks (UDP)	2540
LonWorks2 (TCP)	2541
LonWorks2 (UDP)	2541
Modbus TCP/IP (TCP)	502

Modbus TCP/IP (UDP)	502
PROFInet RT Unicast (TCP)	34962
PROFInet RT Unicast (UDP)	34962
PROFInet RT Multicast (TCP)	34963
PROFInet RT Multicast (UDP)	34963
PROFInet Context Manager (TCP)	34964
PROFInet Context Manager (UDP)	34964
IEC 60870-5-104 (TCP)	2404
IEC 60870-5-104 (UDP)	2404
DNP (TCP)	20000
DNP (UDP)	20000

The Quick Automation Profile also includes the commonly used Ethernet protocols listed in the following table:

Ethernet Protocol	Port Number
IPSec NAT Traversal (UDP)	4500
IPSec NAT traversal (TCP)	4500
FTP-data (TCP)	20
FTP-data (UDP)	20
FTP-control (TCP)	21
FTP-control (UDP)	21
SSH (TCP)	22
SSH (UDP)	22
Telnet (TCP)	23
Telnet (UDP)	23
HTTP (TCP)	80
HTTP (UDP)	80
IPSec (TCP)	1293
IPSec (UDP)	1293
L2F & L2TP (TCP)	1701
L2F & L2TP (UDP)	1701
PPTP (TCP)	1723
PPTP (UDP)	1723
Radius authentication (TCP)	1812
Radius authentication (UDP)	1812
RADIUS accounting (TCP)	1813
RADIUS accounting (UDP)	1813

PolicyCheck

The EtherDevice Router supports a **PolicyCheck** function for maintaining the firewall policy list. The **PolicyCheck** function detects firewall policies that may be configured incorrectly.

PolicyCheck provides an auto detection function for detecting common configuration errors in the Firewall policy (e.g., **Mask**, **Include**, and **Cross conflict**). When adding a new firewall policy, the user just needs to click the PolicyCheck button to check each policy; warning messages will be generated that can be used for further analysis. If the user decides to ignore a warning message, the EtherDevice Router firewall will run on the configuration provided by the user.

The three most common types of configuration errors are related to Mask, Include, and Cross Conflict.

Mask: Policy [X] is masked by Policy [Y]

The Source/Destination IP range or Source/Destination port number of policy [X] is smaller or equal to policy [Y] but the action target (Accept/Drop) is different.

For example, two firewall policies are shown below:

Index	Input	Output	Protocol	Source IP	Destination IP	Target
1	WAN1	LAN	All	10.10.10.10	192.168.127.10	ACCEPT
2	WAN2	LAN	All	20.20.20.10	192.168.127.20	ACCEPT
				to 20.20.20.30		

Suppose the user next adds a new policy with the following configuration:

Index	Input	Output	Protocol	Source IP	Destination IP	Target
3	WAN2	LAN	All	20.20.20.20	192.168.127.20	DROP

After clicking the **PolicyCheck** button, the EtherDevice Router will issue a message informing the user that policy [3] is **masked** by policy [2] because the IP range of policy [3] is smaller than the IP range of policy [2], and the Target action is different.

rule[3] is masked by rule[2]

Include: Policy [X] is included in Policy [Y]

The Source/Destination IP range or Source/Destination port number of policy [X] is less than or equal to policy [Y], and the action target (Accept/Drop) is the same. In this case policy [X] will increase the loading of the EtherDevice Router and lower its performance.

For example, two firewall policies are shown in the following table:

Index	Input	Output	Protocol	Source IP	Destination IP	Target
1	WAN1	LAN	All	10.10.10.10	192.168.127.10	ACCEPT
2	WAN2	LAN	All	20.20.20.10	192.168.127.20	ACCEPT
				to 20.20.20.30		

Suppose the user next adds a new policy with the following configuration:

Index	Input	Output	Protocol	Source IP	Destination IP	Target
3	WAN2	LAN	All	20.20.20.20	192.168.127.20	ACCEPT

After clicking the **PolicyCheck** button, the EtherDevice Router will issue a message informing the user that policy [3] is **included** in policy [2] because the IP range of policy [3] is smaller than the IP range of policy [2], and the Target action is the same.

rule[3] is included in rule[2]

Cross Conflict: Policy [X] cross conflicts with Policy [Y]

Two firewall policy configurations, such as Source IP, Destination IP, Source port, and Destination port, in policy [X] and policy [Y] are masked, and the action target (Accept/Drop) is different.

For example, two firewall policies are shown in the following table:

Index	Input	Output	Protocol	Source IP	Destination IP	Target
1	WAN1	LAN	All	10.10.10.10	192.168.127.10	ACCEPT
2	WAN2	LAN	All	20.20.20.20	192.168.127.25	ACCEPT
				to 20.20.20.30		

Suppose the user next adds a new policy with the following configuration:

Index	Input	Output	Protocol	Source IP	Destination IP	Target
3	WAN2	LAN	All	20.20.20.25	192.168.127.20	DROP
					to 192.168.127.30	

The source IP range in policy 3 is smaller than policy 2, but the destination IP of policy 2 is smaller than policy 3, and the target actions (Accept/Drop) of these two policies are different. If the user clicks the **PolicyCheck** button, the EtherDevice Router will issue a message informing the user that policy [3] is in **Cross Conflict** with policy [2].

Denial of Service (DoS) function

The EtherDevice Router provides 9 different DoS functions for detecting or defining abnormal packet format or traffic flow. The EtherDevice Router will drop the packets when it detects an abnormal packet format. The EtherDevice Router will also monitor some traffic flow parameters and activate the defense process when abnormal traffic conditions are detected.

Null Scan			
Xmas Scan			
NMAP-Xmas Scan			
SYN/FIN Scan			
FIN Scan			
NMAP-ID Scan			
SYN/RST Scan			
ICMP-Death	Limit:	4000	(pkt/s)
SYN-Flood	Limit:	4000	(pkt/s)

Null Scan

Setting	Description	Factory Default
Enable or Disable	Enable or disable the Null Scan	None

Xmas Scan

Setting	Description	Factory Default
Enable or Disable	Enable or disable the Xmas Scan	None

NMAP-Xmas Scan

Setting	Description	Factory Default
Enable or Disable	Enable or disable the NMAP-Xmas	None

SYN/FIN Scan

Setting	Description	Factory Default
Enable or Disable	Enable or disable the SYN/FIN Scan	None

FIN Scan

Setting	Description	Factory Default
Enable or Disable	Enable or disable the FIN Scan	None

NMAP-ID Scan

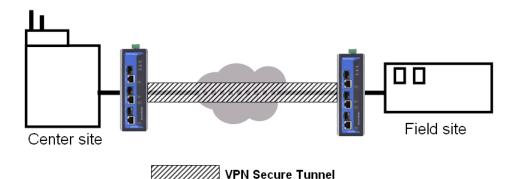
Setting	Description	Factory Default
Enable or Disable	Enable or disable the NMAP-ID Scan	None

SYN/RST Scan

Setting	Description	Factory Default
Enable or Disable	Enable or disable the SYN/RST Scan	None

ICMP-Death

Setting	Description	Factory Default
Enable or Disable	Enable or disable the ICMP-Death defense	None
Packet/Second	The limit value to activate ICMP-Death defense	None


SYN-Flood

Setting	Description	Factory Default
Enable or Disable	Enable or disable the Null Scan function	None
Packet/Second	The limit value to activate SYN-Flood defense	None

VPN (Virtual Private Network)

Overview

This chapter describes how to use the EtherDevice Router to build a secure Remote Automation network with the VPN (Virtual Private Network) feature. A VPN provides a highly cost effective solution of establishing secure tunnels, so that data can be exchanged in a secure manner.

There are two common applications for secure remote communication in an industrial automation network:

IPSec (Internet Protocol Security) VPN for LAN to LAN security: Data communication only in a pre-defined IP range between two different LANs.

L2TP (Layer 2 Tunnel Protocol) VPN for Remote roaming User: Secure data communication for remote roaming users with dynamic IP. L2TP is a popular choice for remote roaming users for VPN applications because the L2TP VPN protocol is already built in to the Microsoft Windows operating system.

IPSec uses IKE (Internet Key Exchange) protocol for Authentication, Key exchange and provides a way for the VPN gateway data to be protected by different encryption methods.

There are 2 phases for IKE for negotiating the IPSec connections between 2 VPN gateways:

Key Exchange (IPSec Phase 1):

The 2 VPN gateways will negotiate how IKE should be protected. Phase 1 will also authenticate the two VPN gateways by the matched Per-shared Key or X.509 Certificate.

Data Exchange (IPSec Phase 2):

In Phase 2, the VPN gateways negotiate to determine additional IPSec connection details, which include the data encryption algorithm.

IPSec Configuration

IPSec configuration includes 5 parts:

- · Global Setting: Enable / Disable all IPSec Tunnels and NAT-Traversal function
- Tunnel Setting: Set up the VPN Connection type and VPN network plan
- · Key Exchange: Authentication for 2 VPN gateways
- Data Exchange: Data encryption between VPN gateways
- Dead Peer Detection: The mechanism for VPN Tunnel maintenance.

Global Configuration

The EtherDevice Router provides 2 Global Settings for VPN applications.

All IPSec Connection

Users can Enable or Disable all VPN services with this configuration.

NOTE

The factory default setting is Disable, so when the user wants to use VPN function, make sure the setting is enabled.

IPSec NAT-T:

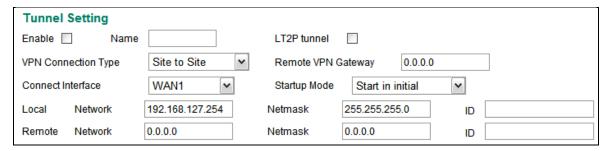
If there is an external NAT device between VPN tunnels, the user must enable the NAT-T (NAT-Traversal) function.

IPSec Quick Setting

The EtherDevice Router's **Quick Setting** mode can be used to easily set up a site-to-site VPN tunnel for two EtherDevice Router units.

When choosing the Quick setting mode, the user just needs to configure the following:

- Tunnel Setting
- Security Setting
 - > Encryption Strength: Simple (AES-128), Standard (AES-192), Strong (AES-256)
 - Password of Per-shared Key


NOTE The Encryption strength and Per-shared key should be configured the same for both EtherDevice Router units.

IPSec Advanced Setting

Click Advanced Setting to configure detailed VPN settings.

Tunnel Setting

Enable or Disable VPN Tunnel

Setting	Description	Factory Default
Enable or Disable	Enable or Disable this VPN Tunnel	Disable

Name of VPN Tunnel

Setting	Description	Factory Default
Max. of 16 characters	User defined name of this VPN Tunnel.	None

NOTE The first character cannot be a number.

L2TP over IPSec Enable or Disable

Setting	Description	Factory Default
Enable or Disable	Enable or Disable IPSec tunnel over L2TP protocol function	None

VPN Connection Type

Setting	Description	Factory Default
Site to Site	VPN tunnel for Local and Remote subnets are fixed	Site to Site
Site to Site (Any)	VPN tunnel for Remote subnet area is dynamic and Local	
	subnet is fixed	

Remote VPN Gateway

Setting	Description	Factory Default
IP Address	Remote VPN Gateway's IP Address	None

Connection Interface

Setting	Description	Factory Default
WAN1	The interface of the VPN Tunnel	WAN1
WAN2 Default Route	If the user enables the WAN backup function, WAN1 would be the primary default route and WAN2 would be the backup route.	

Startup Mode

Setting	Description	Factory Default
Start in Initial	This VPN tunnel will actively initiate the connection with the	Start in Initial
	Remote VPN Gateway.	
Wait for Connecting	This VPN tunnel will wait remote VPN gateway to initiate the	
	connection	

NOTE The maximum number of **Starts** in the initial VPN tunnel is 5. The maximum number of **Waits** for connecting to a VPN tunnel is 20.

Local Network / Netmask / ID

Setting	Description	Factory Default
IP Address	IP address of local VPN network	IP address of LAN
		interface
Subnet Mask	Subnet Mask of local VPN network	Netmask of LAN
		interface

ID	ID for indentifying the VPN tunnel connection.	None
	The Local ID must be equal to the Remote ID of the VPN	
	Gateway. Otherwise, the VPN tunnel cannot be established	
	successfully	

Remote Network / Netmask / ID

Setting	Description	Factory Default
IP Address	IP address of Remote VPN network	0.0.0.0
Subnet Mask	Subnet Mask of local VPN network	0.0.0.0
ID	ID for indentifying the VPN tunnel connection.	None
	The Local ID must be equal to the Remote ID of the VPN	
	Gateway. Otherwise, the VPN tunnel cannot be established.	

Key Exchange (IPSec phase I)

Key Exchange (IPSec Phase 1)				
IKE Mode	Main 💌			
Authentication Mode	Pre Share Key	12345		
Encryption Algorithm	3DES 💌	Hash Algorithm	SHA1 💌	
DH Group	DH 2 (modp1024)			
Negotiation Times	0 (0:forever)	IKE Life Time	1 hour.	
Rekey Expire Time	9 min.	Rekey Fuzz Percent	100 %	

IKE Mode

Setting	Description	Factory Default
Main	In "Main" IKE Mode, both the Remote and Local VPN gateway	MAIN
	will negotiate which Encryption/Hash algorithm and DH groups	
	can be used in this VPN tunnel; both VPN gateways must use	
	the same algorithm to communicate.	
Aggressive	In "Aggressive" Mode, the Remote and Local VPN gateway will	
	not negotiate the algorithm; it will use the user's configuration	
	only.	

Authentication Mode

Setting	Description	Factory Default
Pre-shared Key	The authentication mode of IPSec VPN	Per-Shared Key
X.509		

In **Per-Shared Key Mode**, the user needs to key-in the same Per-Shared Key in the IPSec setting between the Local and Remote secure router.

Authentication Mode	Pre Share Key ▼	12345

In **X.509 Mode**, the user needs to upload the Local and Remote certifications first, and then select the certifications from the drop-down list.

See the X.509 Certification section in this chapter for details.

A	V 500				D1-	
Authentication Mode	X.509	~	Local	Moxa-Cert-A.p12 ✓	Remote	Moxa-Cert-B.cer ►

Encryption Algorithm

Setting	Description	Factory Default
DES	Encryption Algorithm in key exchange	3DES
3DES		
AES-128		
AES-192		
AES-256		

Hash Algorithm

Setting	Description	Factory Default
Any	Hash Algorithm in key exchange	SHA1
MD5		
SHA1		
SHA256		

DH Group

Setting	Description	Factory Default
DH1(modp 768)	Diffie-Hellman groups	DH2(modp 1024)
DH2(modp 1024)	(the Key Exchange group between the Remote and VPN	
DH5(modp 1536)	Gateways)	
DH14(modp 2048)		

Negotiation Time

Setting	Description	Factory Default
Negotiation time	The number of allowed reconnect times when startup mode is	0
	initiated. If the number is 0 , this tunnel will always try	
	connecting to the remote gateway when the VPN tunnel is not	
	created successfully.	

IKE Lifetime

Setting	Description	Factory Default
IKE lifetime (hours)	Lifetime for IKE SA	1 (hr)

Rekey Expire Time

Setting	Description	Factory Default
Rekey expire time	Start to Rekey before IKE lifetime expired	9 (min)
(minutes)		

Rekey Fuzz Percent

Setting	Description	Factory Default
0-100 (%)	The rekey expire time will change randomly to enhance the	100 (%)
	security.	
	Rekey fuzz percent is the maximum random change margin of	
	the Rekey expire time.	
	100% means the rekey expire time will not change randomly.	

Data Exchange (IPSec phase II)

Perfect Forward Secrecy

Setting	Description	Factory Default
Enable or Disable	Uses different security key for different IPSec phases to	Disable
	enhance security	

SA Lifetime

Setting	Description	Factory Default
SA lifetime (minutes)	Lifetime for SA in Phase 2	480 (min)

Encryption Algorithm

Setting	Description	Factory Default
DES	Encryption Algorithm in data exchange	3DES
3DES		
AES-128		
AES-192		
AES-256		

Hash Algorithm

Setting	Description	Factory Default
Any	Hash Algorithm in data exchange	SHA1
MD5		
SHA1		
SHA256		

Dead Peer Detection

Dead Peer Detection is a mechanism to detect whether or not the connection between a local secure router and a remote IPSec tunnel has been lost.

Action

Action when a dead peer is detected.

Setting	Description	Factory Default
Hold	Hold this VPN tunnel	Hold
Restart	Reconnect this VPN tunnel	
Clear	Clear this VPN tunnel	
Disable	Disable Dead Peer Detection	

Delay

Setting	Description	Factory Default
Delay time (seconds)	The period of dead peer detection messages	30 (sec)

Timeout

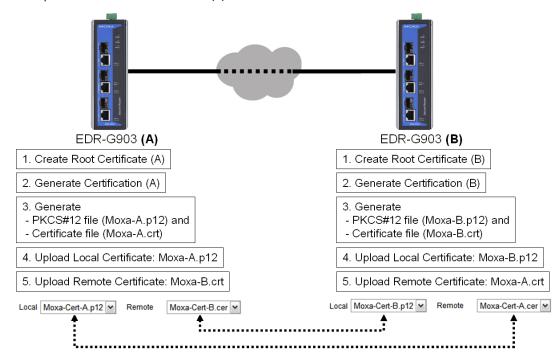
Setting	Description	Factory Default
Timeout (seconds)	Timeout to check if the connection is alive or not	120 (sec)

IPSec Status

The user can check the VPN tunnel status in the IPSec Connection List.

This list shows the Name of the IPSec tunnel, IP address of Local and Remote Subnet/Gateway, and the established status of the Key exchange phase and Data exchange phase.

IPSec Connection List


Name Local Subne	Local Gateway	Remote Gateway		Key Exchange (IPSec Phase 1)	
------------------	---------------	----------------	--	------------------------------------	--

X.509 Certification

X.509 is a digital certificate method commonly used for IPSec Authentication. The EtherDevice Router can generate a trusted Root Certification and then export/import the certificate to the remote VPN gateway.

The diagram below indicates the 5 steps you should follow to use X.509 for IPSec authentication with two VPN gateways, referred to as EDR-G903(A) and EDR-G903(B) in the diagram:

- 1. Root Certificate generation. Both EDR-G903(A) and EDR-G903(B) need to generate their own root certificates.
- 2. EDR-G903(A) and EDR-G903(B) can request new certifications based on their own Root Certificates.
- 3. Generate PKCS#12 local certificate with password (.p12) and Certificate file for remote VPN tunnel (.crt)
 - EDR-G903(A)→Moxa-A.p12 and Moxa-A.crt
 - EDR-G903(B)→Moxa-B.crt and Moxa-B.crt
- 4. Upload the PKCS#12 certificate to the Local Certification list
 - Moxa-A.p12 in EDR-G903(A)
 - Moxa-B.p12 in EDR-G903(B)
- 5. Send the Certificate file (.crt) to the remote VPN gateway and upload to the Remote certificate file
 - Upload Moxa-B.crt to EDR-G903(A)
 - Upload Moxa-A.crt to EDR-G903(B)

Certificate Generation

Certificate Request					
Country Name (2 letter code)	US	Certificate days	100		
State or Province Name	CA	Locality Name	Moxa		
Organization Name	Моха	Organizational Unit Name	Moxa		
Common Name	Moxa-B	Email Address	support@moxa.com		
Activate					

The user must fill in the following information to generate the Root certification:

- Country name (2 Letter code)
- · Certificate Days
- · State or Province Name
- Locality Name
- · Organization Name
- · Organization Unit Name
- · Common Name
- Email Address

After keyin in all information, press Activate to generate the Root Certification.

NOTE

The default setting for Certificate Day is 0, which means that the certification will not terminated unless modified by the user.

Certificate Setting

After Root Certification is activated, the user can generate different certifications for different VPN Tunnels. The user needs to fill in the following information and press **Add and Activate** to add the new certificate to the **Certificate List**.

- · Certificate Days
- · Organization Unit Name
- Certificate Name
- Email Address
- Certificate Password

Certificate	List	(3/10)
		1

Certificate days	Organizational Unit Name	Name	Email Address	Certificate Password
100	Moxa	Moxa-A	support@moxa.com	12345
100	Moxa	Moxa-B	support@moxa.com	12345
100	Moxa	Moxa-C	support@moxa.com	12345

The user can then choose certificates from the list and press the PKCS#12 Export button to generate a .p12 file for a local certificate and press Certificate Export to generate a .crt file for certificates on a Remote VPN gateway.

Local Certificate Upload

Label Name Subject		
PKCS#12 Upload	Browse	Import
Import Password		

Upload the .p12 local certificate on this page. The Password must be the same as the .p12 certificate file. If the password is not correct, the certificate import process will fail.

Label: User defined name for this local certificate

Name/Subject: Show the Name and subject when the certificate is imported successfully or the user selects the certificate on the list

PKCS#12 Upload: Use Browser to select the .p12 file and press the Import button

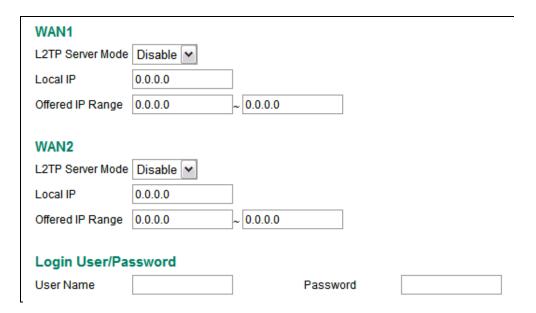
Import Password: The Password for the .p12 certificate

Remote Certificate Upload

Label Name Subject		
Certificate Upload	Browse	Import

Upload the .crt Remote certificate on this page.

Label: User defined name for this local certificate


Name/Subject: Show the Name and subject when the certificate is imported successfully or the user selects a certificate from the list

Certificate Upload: Use the Browser to select a .p12 file and press the Import button.

L2TP (Layer 2 Tunnel Protocol)

L2TP is a popular choice for remote roaming users for VPN applications since an L2TP client is built in to the Microsoft Windows operating system. Since L2TP does not provide an encryption function, it is usually combined with IPSec to provide data encryption.

L2TP Configuration

L2TP Server Mode

Setting	Description	Factory Default
Enable / Disable	Enable or Disable the L2TP function on the WAN1 or WAN 2	Disable
	interface	

Local IP

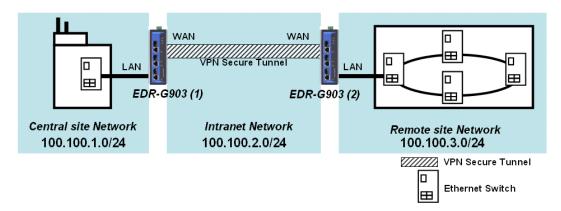
Setting	Description	Factory Default
IP Address	The IP address of the Local Subnet	0.0.0.0

Offered IP Range

Setting	Description	Factory Default
IP Address	Offered IP range is for the L2TP clients	0.0.0.0

Login User Name

Setting	Description	Factory Default
Max. to xx character.	User Name for L2TP connection	NULL


Login Password

Setting	Description	Factory Default
Max. to xx character.	Password for L2TP connection	NULL

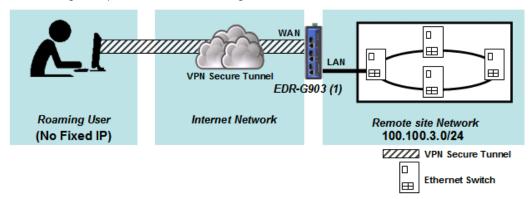
Examples for Typical VPN Applications

Site to Site IPSec VPN tunnel with Per-shared Key

The following example shows how to create a secure LAN to LAN VPN tunnel between the Central site and Remote site via an Intranet network.

VPN Plan:

- All communication from the Central site network (100.100.1.0/24) to the Remote site Network (100.100.3.0/24) needs to pass through the VPN tunnel.
- Intranet Network is 100.100.2.0/24
- The configuration of the WAN/LAN interface for 2 EtherDevice Routers is shown in the following table.


EDR-G903	Configuration	EtherDevice Router (1)	EtherDevice Router (2)
Interface Setting	WAN IP	100.100.2.1	100.100.2.2
	LAN IP	100.100.1.1	100.100.3.1

Based on the requirement and VPN plan, the recommended configuration for VPN IPSec is shown in the following table

	Configuration	EtherDevice Router (1)	EtherDevice Router (2)
Tunnel Setting	Connection Type	Site to Site	Site to Site
	Remote VPN gateway	100.100.2.2	100.100.2.1
	Startup mode	Wait for Connection	Start in Initial
	Local Network /	100.100.1.0 /	100.100.3.0 /
	Netmask	255.255.255.0	25.255.255.0
	Remote Network /	100.100.3.0 /	100.100.1.0 /
	Netmask	25.255.255.0	255.255.255.0
Key Exchange	Per-shared Key	12345	12345
Data Exchange	Encryption / Harsh	3DES / SHA1	3DES / SHA1

L2TP for Remote User Maintenance

The following example shows how a Roaming user uses L2TP over IPSec to connect to theremote site network.

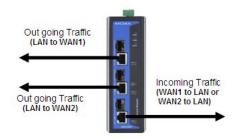
VPN Plan:

- All communication from the Roaming user (no fixed IP) to the Remote site Network (100.100.3.0/24) needs to pass through the VPN tunnel.
- · Communication goes through the Internet.
- The configuration of the WAN/LAN interface for the EtherDevice Router is shown in the following table.

	Configuration	EtherDevice Router (1)
EDR-G903	WAN IP	100.100.2.1
Interface Setting	LAN IP	100.100.3.1

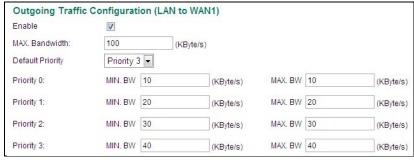
Based on the requirement and VPN plan, the recommended configuration for L2TP over IPSec is shown in the following table:

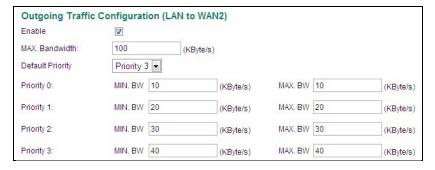
	Configuration	EtherDevice Router (1)	
L2TP Server Setting	L2TP Server Mode (WAN1)	Enable	
	Local IP (L2TP Server IP)	100.100.4.1	
	Offer IP Range	100.100.4.1 ~100.100.4.100	
	Login User / Password	User01 / 12345	
Tunnel Setting	Connection Type	Site to Site (Any)	
	L2TP Tunnel	Enable	
	Local Network	100.100.3.1 / 24	
		(Same as LAN Interface)	
	Startup mode	Wait for Connection	
Key Exchange	Per-shared Key	12345	
Data Exchange	Encryption Algorithm	3DES	
	Harsh Algorithm	SHA1	


Traffic Prioritization

The EtherDevice Router's traffic prioritization capability provides Quality of Service (QoS) to your network by making data delivery more reliable. You can prioritize traffic on your network to ensure that high priority data is transmitted with minimum delay. Traffic can be controlled by a set of rules to obtain the required Quality of Service for your network.

NOTE The maximum number of Firewall policies for the EtherDevice Router is 256.


How Traffic Prioritization Works


The EtherDevice Router provides four different priorities levels (0-3, high to low) for incoming and outgoing traffic. The following figure illustrates incoming traffic, which refers to the traffic transmitted from WAN1 to LAN or WAN2 to LAN interface. Outgoing traffic refers to the traffic transmitted from LAN to WAN1 or from LAN to WAN2.

The following figures show the configuration for incoming and outgoing traffic. Users can manage the priority of incoming traffic (WAN1 to LAN and WAN2 to LAN) and outgoing traffic (LAN to WAN1 and LAN to WAN2).

Traffic Prioritization Configuration

Enable or Disable

Setting	Description	Factory Default
Enable or Disable	Enable or disable the Traffic Prioritization function	Disabled

Max. Bandwidth

Setting	Description	Factory Default
1 to 1,000,000	The maximum bandwidth for total incoming or outgoing traffic	100 KBytes/s
KBytes/s		

Default Priority

Setting	Description	Factory Default
Priority 0/1/2/3	A packet without matching any incoming/outgoing policy will	Priority 3
	adhere to the default priority	

Minimum Bandwidth of Priority 0/1/2/3

Setting	Description	Factory Default
1 to 1,000,000	The minimum bandwidth for Priority 0/1/2/3	Priority 0: 10 KBytes/s
KBytes/s		Priority 1: 20 KBytes/s
		Priority 2: 30 KBytes/s
		Priority 3: 40 KBytes/s

Maximum Bandwidth of Priority 0/1/2/3

Setting	Description	Factory Default
1 to 1,000,000	The maximum bandwidth for Priority 0/1/2/3	Priority 0: 10 KBytes/s
KBytes/s		Priority 1: 20 KBytes/s
		Priority 2: 30 KBytes/s
		Priority 3: 40 KBytes/s

Outgoing/Incoming Policy Setup

After configuring the minimum/maximum bandwidth for each priority, users can set up the incoming or outgoing policies for Ethernet traffic, providing the setup meets all of the following conditions:

Enable or Disable

Setting	Description	Factory Default
Enable or Disable	Enable or disable this Incoming or Outgoing Policy	Disabled

Packet To / From

Setting	Factory Default	
All (WAN1 or WAN2)	Select the direction of Ethernet traffic for this policy	All
WAN1	To: For outgoing policy	
WAN2	From: For incoming policy	

Protocol

Setting	Description	Factory Default
All (TCP/UDP/ICMP)	Select the Protocol for in this Policy	All
TCP		
UDP		
ICMP		

Service

Setting	Description	Factory Default
By IP	Select the service type (IP address or MAC address) for this	By IP
By MAC	policy	

Priority

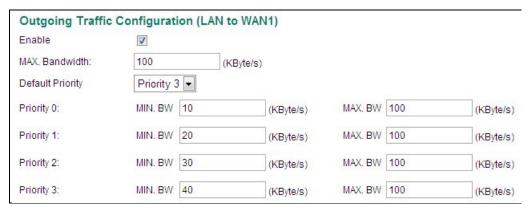
Setting	Description	Factory Default
Priority 0/1/2/3	Select the priority for this policy	Priority 0

Source IP

Setting	Description	Factory Default
All (IP Address)	Select the Source IP address for this policy	AII
Single (IP Address)		
Range (IP Address)		

Source Port

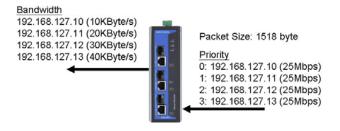
Setting	Description	Factory Default
All (Port number)	Select the Source port number for this policy	All
Single (Port number)		
Range (Port number)		

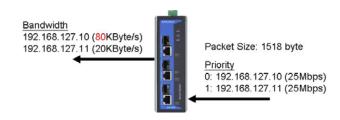

Destination IP

Setting	Description	Factory Default
All (IP Address)	Select the Destination IP address for this policy	All
Single (IP Address)		
Range (IP Address)		

Destination Port

Setting	Description	Factory Default
All (Port number)	Select the Destination port number for this policy	All
Single (Port number)		
Range (Port number)		


The following table shows the management of outgoing traffic. The maximum bandwidth from LAN to WAN is 100 Kbytes. 10 Kbyte is reserved for traffic that matches the parameters of Priority 0. 20 Kbytes is reserved for traffic that matches the parameters of priority 2 and so forth.

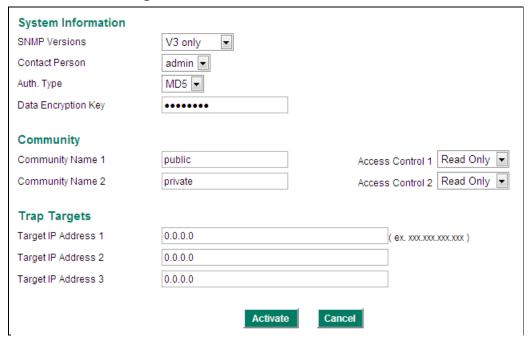

Set up the outgoing policies as below:

Index	Output	Protocol	Source IP	Source Port	Destination IP	Destination Port	MAC Address	Targets
1	WAN1	AII	192.168.127.10	All	AII	All		Priority 0
2	WAN1	All	192.168.127.11	All	All	AII		Priority 1
3	WAN1	All	192.168.127.12	All	All	AII		Priority 2
4	WAN1	All	192.168.127.13	All	All	All	-	Priority 3

The EtherDevice Router will manage the bandwidth for outgoing packets. Based on the four outgoing policies below, when the source IP of the Ethernet traffic matches the outgoing policies, the maximum bandwidth for a packet sent from these source IP addresses will be reserved by its target priority.

If there are only two kinds of traffic packets, priority 0 and priority 1, then transmission will proceed from LAN to WAN1, and the EtherDevice Router will reserve the minimum bandwidth (10 KBytes/s and 20 Kbyte/s) based on these two different IP addresses. In this case, there are still 100 KBytes/s - 10

KBytes/s - 20 KBytes/s = 70 KBytes/s that do not belong to any priority. So, the EtherDevice Router will increase the bandwidth from highest priority (0) to lowest priority (3). The EtherDevice Router will add this 70 KBytes/s bandwidth to priority 0 because the maximum bandwidth of priority 0 is 100 KBytes/s. The following figure shows the bandwidth arrangement of the EtherDevice Router based on this configuration.


Configuring SNMP

The EtherDevice Router supports SNMP V1/V2c/V3. SNMP V1 and SNMP V2c use a community string match for authentication, which means that SNMP servers access all objects with read-only permissions using the community string public (default value). SNMP V3, which requires that the user selects an authentication level of MD5 or SHA, is the most secure protocol. You can also enable data encryption to enhance data security. SNMP security modes and security levels supported by the EtherDevice Router are shown in the following table. Select the security mode and level that will be used to communicate between the SNMP agent and manager.

Protocol	UI Setting	Authentication Type	Data Encryption	Method
Version				
SNMP V1, V2c	V1, V2c Read	Community string	No	Uses a community string
	Community			match for authentication
SNMP V3	MD5 or SHA	Authentication based	No	Provides authentication based
		on MD5 or SHA		on HMAC-MD5, or HMAC-SHA
				algorithms. 8-character
				passwords are the minimum
				requirement for
				authentication.
	MD5 or SHA	Authentication based	Data encryption	Provides authentication based
		on MD5 or SHA	key	onHMAC-MD5 or HMAC-SHA
				algorithms, and data
				encryption key. 8-character
				passwords and a data
				encryption key are the
				minimum requirements for
				authentication and
				encryption.

These parameters are configured on the SNMP page. A more detailed explanation of each parameter is given below.

SNMP Read Settings

SNMP Versions

Setting	Description	Factory Default
Disable	Select the SNMP protocol version used to manage the secure	Disable
V1, V2c, V3, or	router.	
V1, V2c, or		
V3 only		

Contact Person

Setting	Description	Factory Default
Admin or	Admin privilege allows access and authorization to read and	Admin
user	write the MIB file. User privilege only allows reading the MIB	
	file, but does give authorization to write.	

Auth. Type

Setting	Description	Factory Default
MD5	Provides authentication based on the HMAC-MD5 algorithms.	MD5
	8-character passwords are the minimum requirement for	
	authentication.	
SHA	Provides authentication based on the HMAC-SHA algorithms.	
	8-character passwords are the minimum requirement for	
	authentication.	

Data Encryption Key

Setting	Description	Factory Default
Max. 30 Characters	8-character data encryption key is the minimum requirement	None
	for data encryption	

Community Name 1/2

Setting	Description	Factory Default
Max. 30 Characters	Use a community string match for authentication	Public


Access Control

Setting	Description	Factory Default
Read only (Public MIB	Access control type after matching the community string	Read only
only)		
No Access		

Target IP Address

Setting	Description	Factory Default
IP Address	Enter the IP address of the Trap Server used by your network.	Read only

SNMP Trap Type

SNMP Trap Types can be divided into two basic groups: **System Events** and **Port Events**. System Events are related to the overall function of the router, whereas Port Events are related to the activity of a specific port.

System Events	SNMP Trap is sent when
Cold Start	Power is cut off and then reconnected.
Warm Start	The EtherDevice Router is rebooted, such as when network parameters are
	changed (IP address, subnet mask, etc.).
Power Transition (On-Off)	The EtherDevice Router is powered down.
Power Transition (Off-On)	The EtherDevice Router is powered up.
DI (Off)	Digital Input is triggered by an on to off transition
DI (On)	Digital Input is triggered by an off to on transition
Config. Change	A configuration item has been changed.
Auth. Failure	An incorrect password is entered.

Port Events	SNMP Trap is sent when
Link-ON	The port is connected to another device.
Link-OFF	The port is disconnected (e.g., the cable is pulled out or the opposing device
	shuts down).

Using Auto Warning

Since industrial Ethernet devices are often located at the endpoints of a system, these devices will not always know what is happening elsewhere on the network. This means that an industrial Ethernet router that connects to these devices must provide system maintainers with real-time alarm messages. Even when control engineers are out of the control room for an extended period of time, they can still be informed of the status of devices almost instantaneously when exceptions occur. The EtherDevice Router supports different approaches to warn engineers automatically, such as by using email and relay output. It also supports one digital input to integrate sensors with your system and automate alarms using email and relay output.

Configuring Email Warning

The Auto Email Warning function uses e-mail to alert the user when certain user-configured events take place. Three basic steps are required to set up the Auto Warning function:

1. Configure Email Event Types

Select the desired Event types from the Web Browser **Event type** page (a description of each event type is given later in the Email Alarm Events setting subsection).

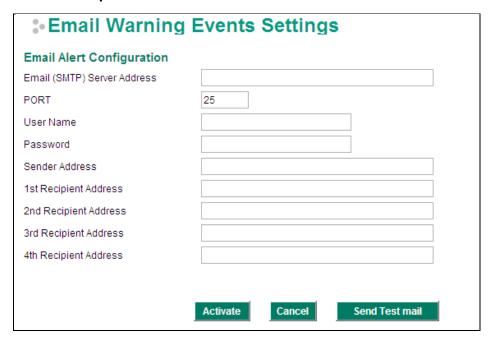
2. Configure Email Settings

To configure the EtherDevice Router's email setup from a browser interface, enter your Mail Server's IP/Name (IP address or name), Account Name, Account Password, the sender's email address, and the email address to which warning messages will be sent.

3. Activate your settings and if necessary, test the email

After configuring and activating your EtherDevice Router's Event Types and Email Setup, you can use the Test Email function to see if your e-mail addresses and mail server address have been properly configured.

Event Type



Email Warning Event Types can be divided into two basic groups: **System Events** and **Port Events**. System Events are related to the overall function of the router, whereas Port Events are related to the activity of a specific port.

System Events	Warning email is sent when
Cold Start	Power is cut off and then reconnected.
Warm Start	The EtherDevice Router is rebooted, such as when network parameters are
	changed (IP address, subnet mask, etc.).
Power Transition (On-Off)	The EtherDevice Router is powered down.
Power Transition (Off-On)	The EtherDevice Router is powered up.
DI (Off)	Digital Input is triggered by on to off transition
DI (On)	Digital Input is triggered by off to on transition
Config. Change	A configuration item has been changed.
Auth. Failure	An incorrect password is entered.

Port Events	Warning email is sent when
Link-ON	The port is connected to another device.
Link-OFF	The port is disconnected (e.g., the cable is pulled out or the opposing device
	shuts down).

E-mail Setup

Main Server IP/Name

Setting	Description	Factory Default
IP address	The IP Address of your email server.	None

Port

Setting	Description	Factory Default
Port number	ort number The port number of your email server. None	

Account Name

Setting Description		Factory Default
Max. 30 Characters	Your email account name (typically your user name)	None

Email Password

Setting	Description	Factory Default
Max. 30 characters	The Password of your email account	None

Sender Email Address

Setting	Description	Factory Default
IP address	The IP Address of the email sender	None

Recipient Email Address

Setting	Description	Factory Default
Max. 50 characters	You can set up to 4 email addresses to receive alarm emails	None
	from the EtherDevice Router.	

Send Test Email

After configuring the email settings, you should first click Activate to activate those settings, and then click **Send Test Email** to verify that the settings are correct.

NOTE

Auto warning e-mail messages will be sent through an authentication protected SMTP server that supports the CRAM-MD5, LOGIN, and PLAIN methods of SASL (Simple Authentication and Security Layer) authentication mechanism. We strongly recommend not entering your Account Name and Account Password if auto warning e-mail messages can be delivered without using an authentication mechanism.

Configuring Relay Warning

The Auto Relay Warning function uses relay output to alert the user when certain user-configured events take place. There are two basic steps required to set up the Relay Warning function:

1. Configuring Relay Event Types

Select the desired **Event types** from the Web Browser Event type page (a description of each event type is given later in the Relay Alarm Events setting subsection).

2. Activate your settings

After completing the configuration procedure, you will need to activate your EtherDevice Router's Relay Event Types.

Event Types can be divided into two basic groups: **System Events** and **Port Events**. System Events are related to the overall function of the router, whereas Port Events are related to the activity of a specific port.

System Events	Warning Relay output is triggered when
Power Input 1 failure (On→Off)	Power input 1 is down.
Power Input 2 failure (On→Off)	Power input 2 is down.
DI (Off)	Digital Input is triggered by on to off transition
DI (On)	Digital Input is triggered by off to on transition

Port Events	Warning Relay output is triggered when
Link-ON	The port is connected to another device.
Link-OFF	The port is disconnected (e.g., the cable is pulled out or the opposing
	device shuts down).
Ignore	Ignore the status of the port

Override relay alarm settings

Select this option to override the relay warning setting temporarily. Releasing the relay output will allow administrators to fix any problems with the warning condition.

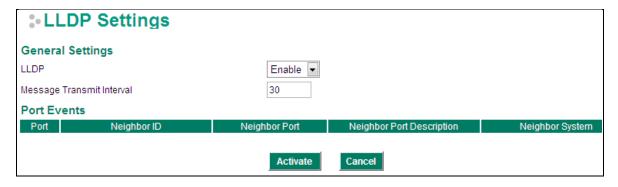
Warning List

Use this table to see if any relay alarms have been issued.

Using Diagnosis

The EtherDevice Router provides Ping tools and LLDP for administrators to diagnose network systems.

Ping



The Ping function uses the ping command to give users a simple but powerful tool for troubleshooting network problems. The function's most unique feature is that even though the ping command is entered from the user's PC keyboard, the actual ping command originates from the EtherDevice Router itself. In this way, the user can essentially control the EtherDevice Router and send ping commands out through its ports. There are two basic steps required to set up the Ping command to test network integrity:

- Select which interface will be used to send the ping commands. You may choose from WAN1, WAN2, and LAN.
- 2. Type in the desired IP address, and click Ping.

LLDP Function Overview

Defined by IEEE 802.11AB, Link Layer Discovery Protocol (LLDP) is an OSI Layer 2 Protocol that standardizes the methodology of self-identity advertisement. It allows each networking device, such as a Moxa managed switch/router, to periodically inform its neighbors about itself and its configuration. In this way, all devices will be aware of each other.

The router's web interface can be used to enable or disable LLDP, and to set the LLDP **Message Transmit Interval**. Users can view each switch's neighbor-list, which is reported by its network neighbors.

LLDP Setting

Enable LLDP

Setting	Description	Factory Default
Enable or Disable	Enable or disable LLDP function.	Enable

Message Transmit Interval

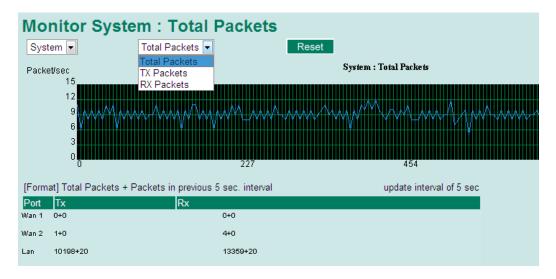
Setting	Description	Factory Default
5 to 32768 sec.	Set the transmit interval of LLDP messages. Unit is in seconds.	30 (sec.)

LLDT Table

Port: The port number that connects to the neighbor device.

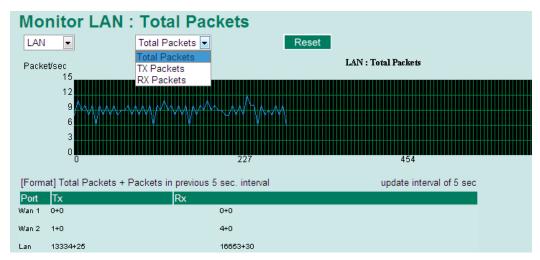
Neighbor ID: A unique entity that identifies a neighbor device; this is typically the MAC address.

Neighbor Port: The port number of the neighbor device.


Neighbor Port Description: A textual description of the neighbor device's interface. **Neighbor System:** Hostname of the neighbor device.

Using Monitor

You can monitor statistics in real time from the EtherDevice Router's web console.


Monitor by System

Access the Monitor by selecting "System" from the left selection bar. Monitor by System allows the user to view a graph that shows the combined data transmission activity of all the EtherDevice Router's 3 ports. Click one of the three options—Total Packets, TX Packets or RX Packets—to view transmission activity of specific types of packets. Recall that TX Packets are packets sent out from the EtherDevice Router, and RX Packets are packets received from connected devices. The Total Packets option displays a graph that combines TX and RX activity. The graph displays data transmission activity by showing **Packets/s** (i.e., packets per second, or pps) versus **sec.** (seconds). The graph is updated every few seconds, allowing you to analyze data transmission activity in real time.

Monitor by Port

Access the Monitor by Port function by selecting the WAN1, WAN2, or LAN interface from the left drop-down list. You can view graphs that show All Packets, TX Packets, or RX Packets, but in this case, only for an individual port. The graph displays data transmission activity by showing **Packets/s** (i.e., packets per second, or pps) versus **sec**. (seconds). The graph is updated every few seconds, allowing you to analyze data transmission activity in real time.

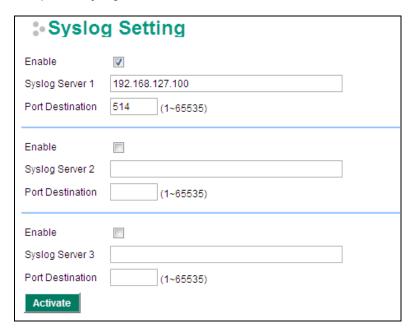
Using System Log

The EtherDevice Router provides **EventLog** and **Syslog** functions to record important events.

Using EventLog

Field	Description
Bootup	This field shows how many times the EDR-G509 has been rebooted or cold started.
Date	The date is updated based on how the current date is set in the "Basic Setting" page.
Time	The time is updated based on how the current time is set in the "Basic Setting" page.
System Startup Time	The system startup time related to this event.
Event	Events that have occurred.

The following events will be recorded in the EtherDevice Router EventLog Table:


Event	Status
Syslog	Configuration change activated
DNS	Configuration change activated
Static Route	Configuration change activated
SYSTEMINFO	Configuration change activated
SNMPTRAP	Configuration change activated
Filter	Configuration change activated
NAT	Configuration change activated
DoS	Configuration change activated
QoS_Bandwith	Configuration change activated
QoS_DownStream	Configuration change activated
QoS_UpStream	Configuration change activated
DHCP	Configuration Change activated/ Enable / Disable
NTP	Configuration Change activated/ Enable / Disable
SNMP	Configuration Change activated/ Enable / Disable
DDNS	Configuration Change activated/ Enable / Disable
WAN Backup	Configuration change activated
LAN	Link on / Link off / IP change
WAN2	Link on / Link off / IP change
WAN1	Link on / Link off / IP change
Password	Configuration change activated
Login	Authentication Fail / Authentication Pass
Accessible IP function	Enable / Disable
Power transition (On -> Off)	
Power transition (Off -> On)	
DI transition (Off -> On)	

DI transition (On -> Off)	
Cold start	
Factory default	Warm start
System restart	Warm start
Firmware Upgrade	Warm start
Configuration Upgrade	Warm start

NOTE The maximum number of event entries is 1000.

Using Syslog

This function provides the event logs for the syslog server. The function supports 3 configurable syslog servers and syslog server UDP port numbers. When an event occurs, the event will be sent as a syslog UDP packet to the specified syslog servers.

Syslog Server 1/2/3

Setting	Description	Factory Default
IP Address	Enter the IP address of the Syslog Server used by your	None
	network.	
Port Destination	Enter the UDP port of the Syslog Server.	514
(1 to 65535)		

Using HTTPs/SSL

To secure your HTTP access, the EtherDevice Router supports HTTPS/SSL to encrypt all HTTP traffic. Perform the following steps to access the EtherDevice Router's web browser interface via HTTPS/SSL.

1. Open Internet Explorer and type https://< EtherDevice Router's IP address> in the address field. Press Enter to establish the connection.

2. A warning message will appear to warn the user that the security certificate was issued by a company they have not chosen to trust.

3. Select **Yes** to enter the EtherDevice Router's web browser interface and access the web browser interface secured via HTTPS/SSL.

A

MIB Groups

The EtherDevice Router comes with built-in SNMP (Simple Network Management Protocol) agent software that supports cold start trap, line up/down trap, and RFC 1213 MIB-II. The standard MIB groups that the EtherDevice Router series support are:

MIB II.1 - System Group

sysORTable

MIB II.2 - Interfaces Group

ifTable

MIB II.4 - IP Group

ipAddrTable

ip Net To Media Table

IpGroup

IpBasicStatsGroup

IpStatsGroup

MIB II.5 - ICMP Group

IcmpGroup

IcmpInputStatus

IcmpOutputStats

MIB II.6 - TCP Group

tcpConnTable

TcpGroup

TcpStats

MIB II.7 - UDP Group

udpTable

UdpStats

MIB II.11 - SNMP Group

SnmpBasicGroup

SnmpInputStats

SnmpOutputStats

Public Traps:

- 1. Cold Start
- 2. Link Up
- 3. Link Down
- 4. Authentication Failure

Private Traps:

- 1. Configuration Changed
- 2. Power On
- 3. Power Off
- 4. DI Trap

The EtherDevice Router also provides a MIB file, located in the file "Moxa-EDRG903-MIB.my" on the EtherDevice Router Series utility CD-ROM for SNMP trap message interpretation